๐Ÿ–ฅ๏ธ Deep Learning
  • [DL] Training Related Skills - SGD, Momentum, AdaGrad, Adam (ํ•™์Šต ๊ด€๋ จ ๊ธฐ์ˆ ๋“ค)

    Parameter(๋งค๊ฐœ๋ณ€์ˆ˜) ๊ฐฑ์‹ ์‹ ๊ฒฝ๋ง ํ•™์Šต์˜ ๋ชฉ์ ์€ Loss Function (์†์‹ค ํ•จ์ˆ˜)์˜ ๊ฐ’์„ ๊ฐ€๋Šฅํ•œ ๋‚ฎ์ถ”๋Š” ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ฐพ๋Š”๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ๊ณง ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ์ตœ์ ๊ฐ’์„ ์ฐพ๋Š” ๋ฌธ์ œ์ด๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ‘ธ๋Š”๊ฒƒ์€ Optimization(์ตœ์ ํ™”) ๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋ฆฌ๊ณ  ์ตœ์ ์˜ Parameter(๋งค๊ฐœ๋ณ€์ˆ˜) ๊ฐ’์„ ์ฐพ๋Š” ๋‹จ์†Œ๋กœ Parameter(๋งค๊ฐœ๋ณ€์ˆ˜)์˜ Gradient(๊ธฐ์šธ๊ธฐ-๋ฏธ๋ถ„)์„ ์ด์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.Parameter(๋งค๊ฐœ๋ณ€์ˆ˜)์˜ Gradient๋ฅผ ๊ตฌํ•ด, ๊ธฐ์šธ์–ด์ง„ ๋ฐฉํ–ฅ์œผ๋กœ Parameter(๋งค๊ฐœ๋ณ€์ˆ˜) ๊ฐ’์„ ๊ฐฑ์‹ ํ•˜๋Š” ์ผ์„ ๋ช‡ ๋ฒˆ์ด๊ณ  ๋ฐ˜๋ณตํ•ด์„œ ์ ์  ์ตœ์ ์˜ ๊ฐ’์— ๋‹ค๊ฐ€๊ฐ”์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ์ด ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• - Stochastic Gradient Descent(SGD)๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.๋˜ํ•œ ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• - Stochastic G..

    Parameter(๋งค๊ฐœ๋ณ€์ˆ˜) ๊ฐฑ์‹ ์‹ ๊ฒฝ๋ง ํ•™์Šต์˜ ๋ชฉ์ ์€ Loss Function (์†์‹ค ํ•จ์ˆ˜)์˜ ๊ฐ’์„ ๊ฐ€๋Šฅํ•œ ๋‚ฎ์ถ”๋Š” ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ฐพ๋Š”๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ๊ณง ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ์ตœ์ ๊ฐ’์„ ์ฐพ๋Š” ๋ฌธ์ œ์ด๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ‘ธ๋Š”๊ฒƒ์€ Optimization(์ตœ์ ํ™”) ๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋ฆฌ๊ณ  ์ตœ์ ์˜ Parameter(๋งค๊ฐœ๋ณ€์ˆ˜) ๊ฐ’์„ ์ฐพ๋Š” ๋‹จ์†Œ๋กœ Parameter(๋งค๊ฐœ๋ณ€์ˆ˜)์˜ Gradient(๊ธฐ์šธ๊ธฐ-๋ฏธ๋ถ„)์„ ์ด์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.Parameter(๋งค๊ฐœ๋ณ€์ˆ˜)์˜ Gradient๋ฅผ ๊ตฌํ•ด, ๊ธฐ์šธ์–ด์ง„ ๋ฐฉํ–ฅ์œผ๋กœ Parameter(๋งค๊ฐœ๋ณ€์ˆ˜) ๊ฐ’์„ ๊ฐฑ์‹ ํ•˜๋Š” ์ผ์„ ๋ช‡ ๋ฒˆ์ด๊ณ  ๋ฐ˜๋ณตํ•ด์„œ ์ ์  ์ตœ์ ์˜ ๊ฐ’์— ๋‹ค๊ฐ€๊ฐ”์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ์ด ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• - Stochastic Gradient Descent(SGD)๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.๋˜ํ•œ ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ• - Stochastic G..

    Read more
  • [DL] Activation Function - ํ™œ์„ฑํ™” ํ•จ์ˆ˜

    Activation Function (ํ™œ์„ฑํ™” ํ•จ์ˆ˜)Activation Function(ํ™œ์„ฑํ™” ํ•จ์ˆ˜)๋ž€? ์‹ ๊ฒฝ๋ง์—์„œ ๊ฐ Node & Neuron์—์„œ Input Signal(์ž…๋ ฅ์‹ ํ˜ธ)์˜ ์ดํ•ฉ์„ Output Signal(์ถœ๋ ฅ ์‹ ํ˜ธ)๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.๋˜ํ•œ Nerual Network(์‹ ๊ฒฝ๋ง)์˜ Non-Linear ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ฒŒ ํ•ด์ค๋‹ˆ๋‹ค.๋น„์„ ํ˜• ๋ฌธ์ œ: ์ž…๋ ฅ, ์ถœ๋ ฅ ๋ณ€์ˆ˜๊ฐ„์˜ ๊ด€๊ณ„๊ฐ€ ์„ ํ˜•์ด ์•„๋‹Œ ๋ฌธ์ œ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ž…๋ ฅ ๋ณ€์ˆ˜๊ฐ€ ์ž‘์€ ๋ณ€ํ™”๊ฐ€ ์ถœ๋ ฅ์— ๋น„๋ก€ํ•˜์ง€ ์•Š๊ฑฐ๋‚˜, ์˜ˆ์ธกํ•˜๊ธฐ ์–ด๋ ค์šด ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ค๋Š” ๊ฒฝ์šฐ์— ํ•ด๋‹นActivation Function(ํ™œ์„ฑํ™” ํ•จ์ˆ˜)๋Š” ์ž„๊ณ„๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ ์ถœ๋ ฅ์ด ๋ด๋€๋‹ˆ๋‹ค, ์ด๋Ÿฐ ํ•จ์ˆ˜๋ฅผ Step Function(๊ณ„์‚ฐ ํ•จ์ˆ˜)๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋ž˜์„œ Perceptron(ํผ์…‰ํŠธ๋ก )์—์„œ Activation..

    Activation Function (ํ™œ์„ฑํ™” ํ•จ์ˆ˜)Activation Function(ํ™œ์„ฑํ™” ํ•จ์ˆ˜)๋ž€? ์‹ ๊ฒฝ๋ง์—์„œ ๊ฐ Node & Neuron์—์„œ Input Signal(์ž…๋ ฅ์‹ ํ˜ธ)์˜ ์ดํ•ฉ์„ Output Signal(์ถœ๋ ฅ ์‹ ํ˜ธ)๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.๋˜ํ•œ Nerual Network(์‹ ๊ฒฝ๋ง)์˜ Non-Linear ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ฒŒ ํ•ด์ค๋‹ˆ๋‹ค.๋น„์„ ํ˜• ๋ฌธ์ œ: ์ž…๋ ฅ, ์ถœ๋ ฅ ๋ณ€์ˆ˜๊ฐ„์˜ ๊ด€๊ณ„๊ฐ€ ์„ ํ˜•์ด ์•„๋‹Œ ๋ฌธ์ œ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ž…๋ ฅ ๋ณ€์ˆ˜๊ฐ€ ์ž‘์€ ๋ณ€ํ™”๊ฐ€ ์ถœ๋ ฅ์— ๋น„๋ก€ํ•˜์ง€ ์•Š๊ฑฐ๋‚˜, ์˜ˆ์ธกํ•˜๊ธฐ ์–ด๋ ค์šด ๋ณ€ํ™”๋ฅผ ์ผ์œผํ‚ค๋Š” ๊ฒฝ์šฐ์— ํ•ด๋‹นActivation Function(ํ™œ์„ฑํ™” ํ•จ์ˆ˜)๋Š” ์ž„๊ณ„๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ ์ถœ๋ ฅ์ด ๋ด๋€๋‹ˆ๋‹ค, ์ด๋Ÿฐ ํ•จ์ˆ˜๋ฅผ Step Function(๊ณ„์‚ฐ ํ•จ์ˆ˜)๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋ž˜์„œ Perceptron(ํผ์…‰ํŠธ๋ก )์—์„œ Activation..

    Read more
  • [DL] Feed-forward Network (ํ”ผ๋“œ-ํฌ์›Œ๋“œ ๋„คํŠธ์›Œํฌ)

    Feed-Forward Network Feed-Forward Networks๋Š” ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ์ธ๊ณต ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ์ค‘ ํ•˜๋‚˜๋กœ, Input Layer(์ž…๋ ฅ์ธต)์—์„œ Output Layer(์ถœ๋ ฅ์ธต)์œผ๋กœ ๋ฐ์ดํ„ฐ๊ฐ€ ์ˆœ๋ฐฉํ–ฅ์œผ๋กœ ํ๋ฅด๋Š” ๊ตฌ์กฐ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ Data๋Š” ๊ฐ Layer(์ธต)์„ ์ง€๋‚  ๋•Œ๋งˆ๋‹ค ๊ฐ€์ค‘์น˜์— ์˜ํ•ด ๋ณ€ํ™˜๋˜๊ณ , Activation Function(ํ™œ์„ฑํ™” ํ•จ์ˆ˜)๋ฅผ ํ†ตํ•ด ๋‹ค์Œ Layer(์ธต)์œผ๋กœ ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค ์ด๋Ÿฌํ•œ ๋„คํŠธ์›Œํฌ๋Š” ์ˆœํ™˜ ์—ฐ๊ฒฐ์ด๋‚˜ ๋ณต์žกํ•œ Feedback ๋ฃจํ”„๊ฐ€ ์—†์–ด์„œ ๊ณ„์‚ฐ์ด ๋น„๊ต์  ๊ฐ„๋‹จํ•˜๊ณ , ๋‹ค์–‘ํ•œ ๋ฌธ์ œ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ •๋ฆฌํ•˜์ž๋ฉด, ๋ฐ์ดํ„ฐ๊ฐ€ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ํ•œ ๋ฐฉํ–ฅ์œผ๋กœ๋งŒ ํ๋ฅธ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋Š” Input Layer(์ž…๋ ฅ์ธต)์—์„œ ์‹œ์ž‘ํ•˜์—ฌ Hidden Layer(์€๋‹‰์ธต)์„ ๊ฑฐ์ณ..

    Feed-Forward Network Feed-Forward Networks๋Š” ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ์ธ๊ณต ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ์ค‘ ํ•˜๋‚˜๋กœ, Input Layer(์ž…๋ ฅ์ธต)์—์„œ Output Layer(์ถœ๋ ฅ์ธต)์œผ๋กœ ๋ฐ์ดํ„ฐ๊ฐ€ ์ˆœ๋ฐฉํ–ฅ์œผ๋กœ ํ๋ฅด๋Š” ๊ตฌ์กฐ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ Data๋Š” ๊ฐ Layer(์ธต)์„ ์ง€๋‚  ๋•Œ๋งˆ๋‹ค ๊ฐ€์ค‘์น˜์— ์˜ํ•ด ๋ณ€ํ™˜๋˜๊ณ , Activation Function(ํ™œ์„ฑํ™” ํ•จ์ˆ˜)๋ฅผ ํ†ตํ•ด ๋‹ค์Œ Layer(์ธต)์œผ๋กœ ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค ์ด๋Ÿฌํ•œ ๋„คํŠธ์›Œํฌ๋Š” ์ˆœํ™˜ ์—ฐ๊ฒฐ์ด๋‚˜ ๋ณต์žกํ•œ Feedback ๋ฃจํ”„๊ฐ€ ์—†์–ด์„œ ๊ณ„์‚ฐ์ด ๋น„๊ต์  ๊ฐ„๋‹จํ•˜๊ณ , ๋‹ค์–‘ํ•œ ๋ฌธ์ œ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ •๋ฆฌํ•˜์ž๋ฉด, ๋ฐ์ดํ„ฐ๊ฐ€ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ํ•œ ๋ฐฉํ–ฅ์œผ๋กœ๋งŒ ํ๋ฅธ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋Š” Input Layer(์ž…๋ ฅ์ธต)์—์„œ ์‹œ์ž‘ํ•˜์—ฌ Hidden Layer(์€๋‹‰์ธต)์„ ๊ฑฐ์ณ..

    Read more
  • ์ด๋ฒˆ๊ธ€์—์„œ๋Š” ๋‹จ์ˆœํ•œ Layer ๋ถ€ํ„ฐ ํ•œ๋ฒˆ ๊ตฌํ˜„ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ์•ž์˜ ๊ธ€์—์„œ๋ณธ ๊ณ„์‚ฐ ๊ทธ๋ž˜ํ”„์˜ ๊ณฑ์…ˆ ๋…ธ๋“œ๋ฅผ 'MultiLayer', ๋ง์…ˆ ๋…ธ๋“œ๋ฅผ 'AddLayer'๋ผ๋Š” ์ด๋ฆ„์œผ๋กœ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค. ๊ณฑ์…ˆ ๊ณ„์ธต ๋ชจ๋“  ๊ณ„์ธต์€ forward()์™€ backward()๋ผ๋Š” ๊ณตํ†ต์˜ Method(์ธํ„ฐํŽ˜์ด์Šค)๋ฅผ ๊ฐ–๋„๋ก ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค. forward()๋Š” Forward Propagation(์ˆœ์ „ํŒŒ), backward()๋Š” Back propagation(์—ญ์ „ํŒŒ)๋ฅผ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ํ•œ๋ฒˆ ๊ตฌํ˜„ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. # coding: utf-8 class MulLayer: def __init__(self): self.x = None self.y = None # x์™€ y๋ฅผ ์ธ์ˆ˜๋ผ ๋ฐ›๊ณ  ๋‘ ๊ฐ’์„ ๊ณฑํ•ด์„œ ๋ฐ˜ํ™˜ def forward(self, x, y): sel..

    Read more
  • [DL] Backpropagation (์˜ค์ฐจ์—ญ์ „ํŒŒ๋ฒ•)

    Backpropagation (์˜ค์ฐจ์—ญ์ „ํŒŒ๋ฒ•) Backpropagation(์˜ค์ฐจ์—ญ์ „ํŒŒ๋ฒ•)์€ Weight Parameter(๊ฐ€์ค‘์น˜ ๋งค๊ฐœ๋ณ€์ˆ˜)์˜ Gradient(๊ธฐ์šธ๊ธฐ)๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. Backpropagation(์˜ค์ฐจ์—ญ์ „ํŒŒ๋ฒ•)์„ ์ดํ•ดํ•˜๋Š” ๋ฐฉ๋ฒ•์€ 2๊ฐ€์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜๋‚˜๋Š” ์ˆ˜์‹์„ ํ†ตํ•ด์„œ, ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ๊ณ„์‚ฐ ๊ทธ๋ž˜ํ”„๋ฅผ ํ†ตํ•œ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋ณดํ†ต์€ ์ˆ˜์‹์„ ํ†ตํ•˜์ง€๋งŒ, ์ด๋ฒˆ์—๋Š” ๊ณ„์‚ฐ ๊ทธ๋ž˜ํ”„๋กœ ์‚ฌ์šฉํ•ด์„œ '์‹œ๊ฐ์ '์œผ๋กœ ํ•œ๋ฒˆ ์ดํ•ดํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ๊ณ„์‚ฐ ๊ทธ๋ž˜ํ”„ ๊ณ„์‚ฐ ๊ณผ์ •์„ ๊ทธ๋ž˜ํ”„๋กœ ํ•œ๋ฒˆ ๋‚˜ํƒ€๋‚ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ์˜ ๊ทธ๋ž˜ํ”„๋Š” ์ž˜์•„๋Š” ๊ทธ๋ž˜ํ”„ ์ž๋ฃŒ๊ตฌ์กฐ๋กœ, ๋ณต์ˆ˜์˜ Node, Edge๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค. ํ•œ๋ฒˆ ๋ฌธ์ œ๋ฅผ ๋ณด๋ฉด์„œ ์ดํ•ดํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. Q.1 ํ˜„๋นˆ ๊ตฐ์€ ์Šˆํผ์—์„œ 1๊ฐœ์— 100์›์ธ ์‚ฌ๊ณผ๋ฅผ 2๊ฐœ ์ƒ€์Šต๋‹ˆ๋‹ค. ์ด๋•Œ ์ง€๋ถˆ ๊ธˆ์•ก์„ ๊ตฌ..

    Backpropagation (์˜ค์ฐจ์—ญ์ „ํŒŒ๋ฒ•) Backpropagation(์˜ค์ฐจ์—ญ์ „ํŒŒ๋ฒ•)์€ Weight Parameter(๊ฐ€์ค‘์น˜ ๋งค๊ฐœ๋ณ€์ˆ˜)์˜ Gradient(๊ธฐ์šธ๊ธฐ)๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. Backpropagation(์˜ค์ฐจ์—ญ์ „ํŒŒ๋ฒ•)์„ ์ดํ•ดํ•˜๋Š” ๋ฐฉ๋ฒ•์€ 2๊ฐ€์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜๋‚˜๋Š” ์ˆ˜์‹์„ ํ†ตํ•ด์„œ, ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ๊ณ„์‚ฐ ๊ทธ๋ž˜ํ”„๋ฅผ ํ†ตํ•œ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋ณดํ†ต์€ ์ˆ˜์‹์„ ํ†ตํ•˜์ง€๋งŒ, ์ด๋ฒˆ์—๋Š” ๊ณ„์‚ฐ ๊ทธ๋ž˜ํ”„๋กœ ์‚ฌ์šฉํ•ด์„œ '์‹œ๊ฐ์ '์œผ๋กœ ํ•œ๋ฒˆ ์ดํ•ดํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ๊ณ„์‚ฐ ๊ทธ๋ž˜ํ”„ ๊ณ„์‚ฐ ๊ณผ์ •์„ ๊ทธ๋ž˜ํ”„๋กœ ํ•œ๋ฒˆ ๋‚˜ํƒ€๋‚ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ์˜ ๊ทธ๋ž˜ํ”„๋Š” ์ž˜์•„๋Š” ๊ทธ๋ž˜ํ”„ ์ž๋ฃŒ๊ตฌ์กฐ๋กœ, ๋ณต์ˆ˜์˜ Node, Edge๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค. ํ•œ๋ฒˆ ๋ฌธ์ œ๋ฅผ ๋ณด๋ฉด์„œ ์ดํ•ดํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. Q.1 ํ˜„๋นˆ ๊ตฐ์€ ์Šˆํผ์—์„œ 1๊ฐœ์— 100์›์ธ ์‚ฌ๊ณผ๋ฅผ 2๊ฐœ ์ƒ€์Šต๋‹ˆ๋‹ค. ์ด๋•Œ ์ง€๋ถˆ ๊ธˆ์•ก์„ ๊ตฌ..

    Read more
  • Gradient (๊ธฐ์šธ๊ธฐ) ๋งŒ์•ฝ์— x0, x1์˜ ํŽธ๋ฏธ๋ถ„์„ ๋™์‹œ์— ๊ณ„์‚ฐํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด ์–ด๋–ป๊ฒŒ ํ• ๊นŒ์š”? ๊ทธ๋Ÿฌ๋ฉด ๋ชจ๋“  ํŽธ๋ฏธ๋ถ„์„ ๋ฒกํ„ฐ๋กœ ์ •๋ฆฌ๋ฅผ ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ๊ทธ ์ •๋ฆฌํ•œ๊ฒƒ์„ Grdient(๊ธฐ์šธ๊ธฐ)๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด์„œ ์•„๋ž˜์˜ ์ฝ”๋“œ์™€ ๊ฐ™์ด ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. def numerical_gradient(f, x): h = 1e-4 grad = np.zeros_like(x) # x์™€ ํ˜•์ƒ์ด ๊ฐ™์€ ๋ฐฐ์—ด์„ ์ƒ์„ฑ for idx in range(x.size): tmp_val = x[idx] # f(x+h) ๊ณ„์‚ฐ x[idx] = tmp_val + h fxh1 = f(x) # f(x-h) ๊ณ„์‚ฐ x[idx] = tmp_val - h fxh2 = f(x) grad[idx] = (fxh1 - fxh2) / (2*h) x[idx] = ..

    Read more
  • [DL] Neural Network Training (์‹ ๊ฒฝ๋ง ํ•™์Šต)

    ์ด๋ฒˆ์—๋Š” Neural Network(์‹ ๊ฒฝ๋ง) ํ•™์Šต์— ๋Œ€ํ•˜์—ฌ ์„ค๋ช…ํ•˜๊ณ  Pyhon์—์„œ Mnist Dataset์˜ ์†๊ธ€์”จ ์ˆซ์ž๋ฅผ ํ•™์Šตํ•˜๋Š” ์ฝ”๋“œ๋ฅผ ๊ตฌํ˜„ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. Data ์ฃผ๋„ ํ•™์Šต Machine Learning(ML)์˜ ์ค‘์‹ฌ์—๋Š” Data(๋ฐ์ดํ„ฐ)๊ฐ€ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ๊ฐ€ ์ด๋„๋Š” ์ ‘๊ทผ ๋ฐฉ์‹ ๋•์— ์‚ฌ๋žŒ ์ค‘์‹ฌ ์ ‘๊ทผ์—์„œ ๋ฒ—์–ด๋‚  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทผ๋ฐ, ๋ณดํ†ต ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ํ•˜๋ฉด ํŒจํ„ด์„ ์ฐพ์•„๋‚ด๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ๋žŒ์€ ์ƒ๊ฐ์„ ํ•˜๊ณ  ๊ฒฐ๋ก ์„ ๋„์ถœํ•ฉ๋‹ˆ๋‹ค. ๋‹ค๋งŒ Machine Learning(๊ธฐ๊ณ„ ํ•™์Šต)์—์„œ๋Š” ์‚ฌ๋žŒ์˜ ๊ฐœ์ž…์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด์„ ์ฐพ์œผ๋ ค๊ณ  ์‹œ๋„ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  Neural Network(์‹ ๊ฒฝ๋ง) & DL(๋”ฅ๋Ÿฌ๋‹)์€ ๊ธฐ์กด Machine Learning(๊ธฐ๊ณ„ ํ•™์Šต)์—์„œ ์‚ฌ์šฉํ•˜๋˜ ๋ฐฉ๋ฒ•๋ณด๋‹ค ์‚ฌ๋žŒ์˜ ๊ฐœ์ž…์„ ๋ฐฐ์ œํ•  ์ˆ˜..

    ์ด๋ฒˆ์—๋Š” Neural Network(์‹ ๊ฒฝ๋ง) ํ•™์Šต์— ๋Œ€ํ•˜์—ฌ ์„ค๋ช…ํ•˜๊ณ  Pyhon์—์„œ Mnist Dataset์˜ ์†๊ธ€์”จ ์ˆซ์ž๋ฅผ ํ•™์Šตํ•˜๋Š” ์ฝ”๋“œ๋ฅผ ๊ตฌํ˜„ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. Data ์ฃผ๋„ ํ•™์Šต Machine Learning(ML)์˜ ์ค‘์‹ฌ์—๋Š” Data(๋ฐ์ดํ„ฐ)๊ฐ€ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ๊ฐ€ ์ด๋„๋Š” ์ ‘๊ทผ ๋ฐฉ์‹ ๋•์— ์‚ฌ๋žŒ ์ค‘์‹ฌ ์ ‘๊ทผ์—์„œ ๋ฒ—์–ด๋‚  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทผ๋ฐ, ๋ณดํ†ต ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ํ•˜๋ฉด ํŒจํ„ด์„ ์ฐพ์•„๋‚ด๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ๋žŒ์€ ์ƒ๊ฐ์„ ํ•˜๊ณ  ๊ฒฐ๋ก ์„ ๋„์ถœํ•ฉ๋‹ˆ๋‹ค. ๋‹ค๋งŒ Machine Learning(๊ธฐ๊ณ„ ํ•™์Šต)์—์„œ๋Š” ์‚ฌ๋žŒ์˜ ๊ฐœ์ž…์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด์„ ์ฐพ์œผ๋ ค๊ณ  ์‹œ๋„ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  Neural Network(์‹ ๊ฒฝ๋ง) & DL(๋”ฅ๋Ÿฌ๋‹)์€ ๊ธฐ์กด Machine Learning(๊ธฐ๊ณ„ ํ•™์Šต)์—์„œ ์‚ฌ์šฉํ•˜๋˜ ๋ฐฉ๋ฒ•๋ณด๋‹ค ์‚ฌ๋žŒ์˜ ๊ฐœ์ž…์„ ๋ฐฐ์ œํ•  ์ˆ˜..

    Read more
  • [DL] Neural Networks (์‹ ๊ฒฝ๋ง)

    ์ด๋ฒˆ์—๋Š” Neural Network, ์‹ ๊ฒฝ๋ง์— ๋ฐํ•˜์—ฌ ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. Neural Network(์‹ ๊ฒฝ๋ง)์€ ์ธ๊ณต์ง€๋Šฅ, ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ๋ฐฉ๋ฒ•์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ์ธ๊ฐ„ ๋˜๋Š” ๋™๋ฌผ์˜ ๋‡Œ์— ์žˆ๋Š” ์ƒ๋ฌผํ•™์  ์‹ ๊ฒฝ๋ง์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„ ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ƒ๋ฌผํ•™์  ๋‰ด๋Ÿฐ์ด ์„œ๋กœ๊ฐ„์˜ ์‹ ํ˜ธ๋ฅผ ๋ณด๋‚ด๋Š” ๋ฐฉ์‹์„ ๋ชจ๋ฐฉํ•ฉ๋‹ˆ๋‹ค. Perceptron (ํผ์…‰ํŠธ๋ก )๊ณผ Neural Network(์‹ ๊ฒฝ๋ง) Perceptron(ํผ์…‰ํŠธ๋ก )๊ณผ Neural Network(์‹ ๊ฒฝ๋ง)์€ ๊ณตํ†ต์ ์ด ๋งŽ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋‹ค๋ฅธ์ ์„ ์ค‘์ ์œผ๋กœ ๋ณด๋ฉด์„œ ์„ค๋ช…ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ์‹ ๊ฒธ๋ง๋ฅผ ๊ทธ๋ฆผ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด ์œ„์˜ ๊ทธ๋ฆผ์ฒ˜๋Ÿผ ๋‚˜์˜ต๋‹ˆ๋‹ค. ๋งจ ์™ผ์ชฝ์€ Input Layer(์ž…๋ ฅ์ธต), ์ค‘๊ฐ„์ธต์€ Hidden layer(์€๋‹‰์ธต), ์˜ค๋ฅธ์ชฝ์€ Output Layer(์ถœ๋ ฅ์ธต)์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค...

    ์ด๋ฒˆ์—๋Š” Neural Network, ์‹ ๊ฒฝ๋ง์— ๋ฐํ•˜์—ฌ ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. Neural Network(์‹ ๊ฒฝ๋ง)์€ ์ธ๊ณต์ง€๋Šฅ, ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ๋ฐฉ๋ฒ•์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ์ธ๊ฐ„ ๋˜๋Š” ๋™๋ฌผ์˜ ๋‡Œ์— ์žˆ๋Š” ์ƒ๋ฌผํ•™์  ์‹ ๊ฒฝ๋ง์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„ ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ƒ๋ฌผํ•™์  ๋‰ด๋Ÿฐ์ด ์„œ๋กœ๊ฐ„์˜ ์‹ ํ˜ธ๋ฅผ ๋ณด๋‚ด๋Š” ๋ฐฉ์‹์„ ๋ชจ๋ฐฉํ•ฉ๋‹ˆ๋‹ค. Perceptron (ํผ์…‰ํŠธ๋ก )๊ณผ Neural Network(์‹ ๊ฒฝ๋ง) Perceptron(ํผ์…‰ํŠธ๋ก )๊ณผ Neural Network(์‹ ๊ฒฝ๋ง)์€ ๊ณตํ†ต์ ์ด ๋งŽ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋‹ค๋ฅธ์ ์„ ์ค‘์ ์œผ๋กœ ๋ณด๋ฉด์„œ ์„ค๋ช…ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ์‹ ๊ฒธ๋ง๋ฅผ ๊ทธ๋ฆผ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด ์œ„์˜ ๊ทธ๋ฆผ์ฒ˜๋Ÿผ ๋‚˜์˜ต๋‹ˆ๋‹ค. ๋งจ ์™ผ์ชฝ์€ Input Layer(์ž…๋ ฅ์ธต), ์ค‘๊ฐ„์ธต์€ Hidden layer(์€๋‹‰์ธต), ์˜ค๋ฅธ์ชฝ์€ Output Layer(์ถœ๋ ฅ์ธต)์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค...

    Read more
  • [DL] Perceptron (ํผ์…‰ํŠธ๋ก )

    Perceptron(ํผ์…‰ํŠธ๋ก ) ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‹ ๊ฒฝ๋ง(๋”ฅ๋Ÿฌ๋‹-DL)์˜ ๊ธฐ์›์ด ๋˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ž…๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ Perceptron(ํผ์…‰ํŠธ๋ก )์˜ ๊ตฌ์กฐ๋ฅผ ๋ฐฐ์šฐ๋Š”๊ฑด ์‹ ๊ฒฝ๋ง, DL-๋”ฅ๋Ÿฌ๋‹์— ๊ด€ํ•œ ๊ฐœ๋… ๋ฐ ์•„์ด๋””์–ด๋ฅผ ๋ฐฐ์šฐ๋Š”๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. Perceptron(ํผ์…‰ํŠธ๋ก ) ์ด๋ž€? Perceptron(ํผ์…‰ํŠธ๋ก )์€ ๋‹ค์ˆ˜์˜ ์‹ ํ˜ธ๋ฅผ Input(์ž…๋ ฅ)์œผ๋กœ ๋ฐ›์•„ ํ•˜๋‚˜์˜ ์‹ ํ˜ธ๋ฅผ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์‹ ํ˜ธ๋Š” ์ „๋ฅ˜๋‚˜ ๊ฐ•๋ฌผ์ฒ˜๋Ÿผ ํ๋ฆ„์ด ์žˆ๋Š”๊ฒƒ์„ ์ƒ๊ฐํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค. Perceptron(ํผ์…‰ํŠธ๋ก ) ์‹ ํ˜ธ๋„ Flow(ํ๋ฆ„)์„ ๋งŒ๋“ค๊ณ  ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค. ๋‹ค๋งŒ, ์‹ ํ˜ธ๋Š” 'ํ๋ฅธ๋‹ค / ์•ˆ ํ๋ฅธ๋‹ค (1์ด๋‚˜ 0)'์˜ 2๊ฐ€์ง€ ๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Perceptron(ํผ์…‰ํŠธ๋ก )์˜ ๋™์ž‘์›๋ฆฌ ํ•œ๋ฒˆ Input(์ž…๋ ฅ)์œผ๋กœ 2๊ฐœ์˜ ์‹ ํ˜ธ๋ฅผ ๋ฐ›์€ Perceptron์˜ ์˜ˆ์‹œ ๊ทธ๋ฆผ..

    Perceptron(ํผ์…‰ํŠธ๋ก ) ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‹ ๊ฒฝ๋ง(๋”ฅ๋Ÿฌ๋‹-DL)์˜ ๊ธฐ์›์ด ๋˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ž…๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ Perceptron(ํผ์…‰ํŠธ๋ก )์˜ ๊ตฌ์กฐ๋ฅผ ๋ฐฐ์šฐ๋Š”๊ฑด ์‹ ๊ฒฝ๋ง, DL-๋”ฅ๋Ÿฌ๋‹์— ๊ด€ํ•œ ๊ฐœ๋… ๋ฐ ์•„์ด๋””์–ด๋ฅผ ๋ฐฐ์šฐ๋Š”๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. Perceptron(ํผ์…‰ํŠธ๋ก ) ์ด๋ž€? Perceptron(ํผ์…‰ํŠธ๋ก )์€ ๋‹ค์ˆ˜์˜ ์‹ ํ˜ธ๋ฅผ Input(์ž…๋ ฅ)์œผ๋กœ ๋ฐ›์•„ ํ•˜๋‚˜์˜ ์‹ ํ˜ธ๋ฅผ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์‹ ํ˜ธ๋Š” ์ „๋ฅ˜๋‚˜ ๊ฐ•๋ฌผ์ฒ˜๋Ÿผ ํ๋ฆ„์ด ์žˆ๋Š”๊ฒƒ์„ ์ƒ๊ฐํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค. Perceptron(ํผ์…‰ํŠธ๋ก ) ์‹ ํ˜ธ๋„ Flow(ํ๋ฆ„)์„ ๋งŒ๋“ค๊ณ  ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค. ๋‹ค๋งŒ, ์‹ ํ˜ธ๋Š” 'ํ๋ฅธ๋‹ค / ์•ˆ ํ๋ฅธ๋‹ค (1์ด๋‚˜ 0)'์˜ 2๊ฐ€์ง€ ๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Perceptron(ํผ์…‰ํŠธ๋ก )์˜ ๋™์ž‘์›๋ฆฌ ํ•œ๋ฒˆ Input(์ž…๋ ฅ)์œผ๋กœ 2๊ฐœ์˜ ์‹ ํ˜ธ๋ฅผ ๋ฐ›์€ Perceptron์˜ ์˜ˆ์‹œ ๊ทธ๋ฆผ..

    Read more
  • [DL] Matplotlib ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์— ๋ฐํ•˜์—ฌ ์•Œ์•„๋ณด๊ธฐ

    What is Matplotlib? Matplotlib์€ ๋”ฅ๋Ÿฌ๋‹ ์‹คํ—˜์„ ํ• ๋•Œ ๊ทธ๋ž˜ํ”„ ๊ทธ๋ฆฌ๊ธฐ ๋ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐํ™” ํ•ด์ฃผ๋Š” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. Matplotlib์„ ์‚ฌ์šฉํ•˜๋ฉด ๊ทธ๋ž˜ํ”„ ๊ทธ๋ฆฌ๊ธฐ, ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”๊ฐ€ ์‰ฌ์›Œ์ง€๊ณ , ์ฃผ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ• ๋•Œ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ๋Š” ์„ , ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„, ์‚ฐ์ ๋„, ํžˆ์Šคํ† ๊ทธ๋žจ ๋“ฑ์„ ๋งŒ๋“ค์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Matplotlib์„ ์ด์šฉํ•˜์—ฌ ๊ทธ๋ž˜ํ”„ ๊ทธ๋ ค๋ณด๊ธฐ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆด๋ ค๋ฉด Matplotlib ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ Pyplot ๋ชจ๋“ˆ์„ ์ด์šฉํ•ฉ๋‹ˆ๋‹ค. ํ•œ๋ฒˆ sin(์‚ฌ์ธ) ํ•จ์ˆ˜๋ฅผ ๊ทธ๋ฆฌ๋Š” ์˜ˆ๋ฅผ ํ•œ๋ฒˆ ์‚ดํŽด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. import numpy as np import matplotlib.pyplot as plt # ๋ฐ์ดํ„ฐ ์ค€๋น„ x = np.arange(0, 6, 0.1) # 0๋ถ€ํ„ฐ 6๊นŒ์ง€ 0.1 ๊ฐ„๊ฒฉ์œผ๋กœ ์ƒ์„ฑ y = ..

    What is Matplotlib? Matplotlib์€ ๋”ฅ๋Ÿฌ๋‹ ์‹คํ—˜์„ ํ• ๋•Œ ๊ทธ๋ž˜ํ”„ ๊ทธ๋ฆฌ๊ธฐ ๋ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐํ™” ํ•ด์ฃผ๋Š” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. Matplotlib์„ ์‚ฌ์šฉํ•˜๋ฉด ๊ทธ๋ž˜ํ”„ ๊ทธ๋ฆฌ๊ธฐ, ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”๊ฐ€ ์‰ฌ์›Œ์ง€๊ณ , ์ฃผ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ• ๋•Œ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ๋Š” ์„ , ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„, ์‚ฐ์ ๋„, ํžˆ์Šคํ† ๊ทธ๋žจ ๋“ฑ์„ ๋งŒ๋“ค์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Matplotlib์„ ์ด์šฉํ•˜์—ฌ ๊ทธ๋ž˜ํ”„ ๊ทธ๋ ค๋ณด๊ธฐ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆด๋ ค๋ฉด Matplotlib ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ Pyplot ๋ชจ๋“ˆ์„ ์ด์šฉํ•ฉ๋‹ˆ๋‹ค. ํ•œ๋ฒˆ sin(์‚ฌ์ธ) ํ•จ์ˆ˜๋ฅผ ๊ทธ๋ฆฌ๋Š” ์˜ˆ๋ฅผ ํ•œ๋ฒˆ ์‚ดํŽด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. import numpy as np import matplotlib.pyplot as plt # ๋ฐ์ดํ„ฐ ์ค€๋น„ x = np.arange(0, 6, 0.1) # 0๋ถ€ํ„ฐ 6๊นŒ์ง€ 0.1 ๊ฐ„๊ฒฉ์œผ๋กœ ์ƒ์„ฑ y = ..

    Read more