๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)

๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)/๐Ÿ“• Natural Language Processing

[NLP} Tokenization - ํ† ํฐํ™”ํ•˜๊ธฐ

Tokenization - ํ† ํฐํ™”ํ•˜๊ธฐ 1๋‹จ๊ณ„: ์ฝ”๋žฉ ๋…ธํŠธ๋ถ ์ดˆ๊ธฐํ™” ํŒจํ‚ค์ง€๋ฅผ ์„ค์น˜ํ•ด์ค๋‹ˆ๋‹ค. !pip install ratsnlp ๊ตฌ๊ธ€ ๋“œ๋ผ์ด๋ธŒ ์—ฐ๋™ํ•˜๊ธฐ ํŠœํ† ๋ฆฌ์–ผ์—์„œ ๊ตฌ์ถ•ํ•œ ์–ดํœ˜ ์ง‘ํ•ฉ์„ ์ €์žฅํ•ด ๋‘” ๊ตฌ๊ธ€ ๋“œ๋ผ์ด๋ธŒ๋ฅผ ์—ฐ๊ฒฐํ•ฉ๋‹ˆ๋‹ค. from google.colab import drive drive.mount('/gdrive', force_remount=True) 2๋‹จ๊ณ„: GPT ์ž…๋ ฅ๊ฐ’ ๋งŒ๋“ค๊ธฐ GPT ๋ชจ๋ธ ์ž…๋ ฅ๊ฐ’์„ ๋งŒ๋“ค๋ ค๋ฉด Byte-level Byte Pair Encoding ์–ดํœ˜์ง‘ํ•ฉ ๊ตฌ์ถ• ๊ฒฐ๊ณผ(`vocab.json`, `merges.txt`)๊ฐ€ ์ž์‹ ์˜ ๊ตฌ๊ธ€ ๋“œ๋ผ์ด๋ธŒ ๊ฒฝ๋กœ(`/gdrive/My Drive/nlpbook/wordpiece`)์— ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋ฅผ ์ˆ˜ํ–‰ํ•ด ์ด๋ฏธ ๋งŒ๋“ค์–ด ๋†“์€ BBPE ์–ดํœ˜์ง‘ํ•ฉ์„ ํฌ..

๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)/๐Ÿ“• Natural Language Processing

[NLP] Building a vocabulary set - ์–ดํœ˜ ์ง‘ํ•ฉ ๊ตฌ์ถ•ํ•˜๊ธฐ

์–ดํœ˜ ์ง‘ํ•ฉ ๊ตฌ์ถ•ํ•˜๊ธฐ (Vocab) 1๋‹จ๊ณ„: ์‹ค์Šต ํ™˜๊ฒฝ ๋งŒ๋“ค๊ธฐ pip ๋ช…๋ น์–ด๋กœ ํŒจํ‚ค์ง€๋ฅผ ์„ค์น˜ํ•ฉ๋‹ˆ๋‹ค. !pip install ratsnlp 2๋‹จ๊ณ„: ๊ตฌ๊ธ€ ๋“œ๋ผ์ด๋ธŒ ์—ฐ๋™ํ•˜๊ธฐ from google.colab import drive drive.mount('/gdrive', force_remount=True) 3๋‹จ๊ณ„: ๋ง๋ญ‰์น˜ ๋‹ค์šด๋กœ๋“œ ๋ฐ ์ „์ฒ˜๋ฆฌ ์ฝ”ํฌ๋ผ(Korpora)๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ฅผ ํ™œ์šฉํ•ด BPE ์ˆ˜ํ–‰ ๋Œ€์ƒ ๋ง๋ญ‰์น˜๋ฅผ ๋‚ด๋ ค๋ฐ›๊ณ  ์ „์ฒ˜๋ฆฌ. ์‹ค์Šต์šฉ ๋ง๋ญ‰์น˜๋Š” ๋ฐ•์€์ • ๋‹˜์ด ๊ณต๊ฐœํ•˜์‹  Naver Sentiment Movie Corpus(NSMC)์„ ์‚ฌ์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ๋‚ด๋ ค๋ฐ›์•„ `nsmc`๋ผ๋Š” ๋ณ€์ˆ˜๋กœ ์ฝ์–ด๋“ค์ž…๋‹ˆ๋‹ค. from Korpora import Korpora nsmc = Korpora.load("nsmc", force_download..

๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)/๐Ÿ“• Natural Language Processing

[NLP] Tokenization - ํ† ํฐํ™”๋ž€?

Tokenization - ํ† ํฐํ™” 1. ํ† ํฐํ™”๋ž€? ๐Ÿ’ก ๋ฌธ์žฅ์„ ํ† ํฐ ์‹œํ€€์Šค๋กœ ๋‚˜๋ˆ„๋Š” ๊ณผ์ • → ๋ฌธ์ž, ๋‹จ์–ด, ์„œ๋ธŒ์›Œ๋“œ๋“ฑ 3๊ฐ€์ง€ ๋ฐฉ๋ฒ• ํ† ๊ทผํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ํ”„๋กœ๊ทธ๋žจ์„(Tokenizer)๋ผ๊ณ  ํ•œ๋‹ค. ํ† ๊ทผํ™” ๋ฐฉ์‹์—๋Š” ์—ฌ๋Ÿฌ๊ฐ€์ง€๊ฐ€ ์žˆ์Œ → ๋‹จ์–ด(์–ด์ ˆ), ๋ฌธ์ž, ์„œ๋ธŒ์›Œ๋“œ(Subword) ๋‹จ์œ„ ๋‹จ์–ด ๋‹จ์œ„ ํ† ํฐํ™” ๊ณต๋ฐฑ์œผ๋กœ ๋ถ„๋ฆฌ ์žฅ์ : Tokenizer๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์–ดํœ˜ ์ง‘ํ•ฉ์ด ์ปค์ง€๋Š”๊ฑฐ ์™„ํ™” ๐Ÿ’ก Example ์€์ „ํ•œ๋‹ข์œผ๋กœ ํ† ํฐํ™” → ๊ทธ๋ ‡๋‹ค๊ณ  ์€์ „ํ•œ๋‹ข ๊ฐ™์€ Tokenizer ์‚ฌ์šฉํ•ด์š” ์–ดํœ˜์ง‘ํ•ฉ ํฌ๊ธฐ๊ฐ€ ์ปค์ง€๋Š”๊ฑด ๋ง‰๊ธฐ ์–ด๋ ค์›€ (์–ดํœ˜ ์ง‘ํ•ฉ ํฌ๊ธฐ๊ฐ€ ์ปค์งˆ์ˆ˜๋ก..) ๋ฌธ์ž ๋‹จ์œ„ ํ† ๊ทผํ™” ๐Ÿ’ก ๋ฌธ์ž ๋‹จ์œ„ → ๋ชจ๋“  ๋ฌธ์ž๋ฅผ ์–ดํœ˜ ์ง‘ํ•ฉ์— ํฌํ•จํ•จ์œผ๋กœ ๋ฏธ๋“ฑ๋ก ํ† ํฐ ๋ฌธ์ž๋กœ๋ถ€ํ„ฐ ์ž์œ ๋กญ๋‹ค. ๋ฏธ๋“ฑ๋ก ํ† ํฐ: ์–ดํœ˜ ์ง‘ํ•ฉ์— ์—†๋Š” ํ† ํฐ - ์‹ ์กฐ์–ด๋“ฑ ์—์„œ ๋ฐœ์ƒ ๋‹จ์ : ๊ฐ ๋ฌธ..

๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)/๐Ÿ—จ๏ธ Linguistic Engineering

[Words] Word Tokenization - Morphemes (ํ˜•ํƒœ์†Œ)

Word Tokenization - Morphemes Word-based tokenization - ์‚ฌ๋žŒ์ด ์“ฐ๋Š” ๋‹จ์–ด์˜ ์˜๋ฏธ ํฐ ์‚ฌ์ „์ด ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์‚ฌ์ „์— ์—†๋Š” ๋‹จ์–ด๊ฐ€ ์žˆ์œผ๋ฉด ์ฒ˜๋ฆฌ ๋ถˆ๊ฐ€ → ํ•ด๊ฒฐํ•˜๋ ค๋ฉด ์‚ฌ์ „์ด ์—„์ฒญ ์ปค์•ผํ•ด! ๋ณด์ด์ง€ ์•Š๋Š” ๋‹จ์–ด๋‚˜ ํฌ๊ท€ํ•œ ๋‹จ์–ด๋ฅผ ์ž˜ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์—†์Œ ํ•ด๊ฒฐ์ฑ… → subword tokenization Subword tokenization ๋ณดํ†ต ๋ง๋ญ‰์น˜ ์— ์ž์ฃผ ๋“ฑ์žฅํ•˜๋Š” ๋‹จ์–ด๋“ค์˜ ์ง‘ํ•ฉ, ๋นˆ๋„๊ฐ€ ๋‚ฎ์€ ๋‹จ์–ด๋Š” ์–ดํœ˜๊ฐ€ ๋ถ€์กฑํ•  ์ˆ˜๋„ ๋‹จ์–ด๋ณด๋‹ค ๋” ์ชผ๊ฐœ. ๊ทธ๋ ‡๋‹ค๊ณ  ๋‹จ์–ด or ๊ธ€์ž๋„ ์•„๋‹˜ , ๊ทธ ์ค‘๊ฐ„์—์„œ ์ž๋ฅธ๋‹ค. ๋นˆ๋„๊ฐ€ ๋‚ฎ์€๊ฑด ์ตœ๋Œ€ํ•œ ์ž๋ฅด๊ณ  ์‹ถ์€ ์š•๊ตฌ์— ์˜ํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง ๋ณธ์  ์—†๋Š” ๋‹จ์–ด, ํ”ํ•˜์ง€ ์•Š์€ ๋‹จ์–ด ๊ธฐ์กด์˜ NLP๋Š” ๊ณ ์ •๋œ ์–ดํœ˜๋กœ ์ž‘๋™ → ๊ทธ ๋ฐ–์— ์žˆ๋Š” ๋ชจ๋“  ํ† ํฐ์€ UNK(์•Œ์ˆ˜์—†์Œ)์œผ๋กœ ์ถ•์†Œ ..

๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)/๐Ÿ—จ๏ธ Linguistic Engineering

[Words] ํ•œ๊ตญ์–ด ํ˜•ํƒœ์†Œ & Other Morphological Processes

ํ•œ๊ตญ์–ด ํ˜•ํƒœ์†Œ ํ•œ๊ตญ์–ด๋Š” ๊ต์ฐฉ์–ด / ์–ด๊ทผ์— ์ ‘์‚ฌ๊ฐ€ ๋ถ™์–ด์„œ ๋ฌธ๋ฒ•์ด ๊ฒฐ์ • ์–ด๊ทผ ๋‹จ์–ด๋ฅผ ๋ถ„์„ํ•  ๋•Œ ์‹ค์งˆ์  ์˜๋ฏธ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ค‘์‹ฌ ๋ถ€๋ถ„ ex) ์–ด๋ฅธ์Šค๋Ÿฝ๋‹ค-> ์–ด๋ฅธ ์ ‘์‚ฌ ๋‹ค๋ฅธ ์–ด๊ทผ์— ๋ถ™์–ด ์ƒˆ๋กœ์šด ๋‹จ์–ด๋ฅผ ๊ตฌ์„ฑ ์ ‘๋‘์‚ฌ, ์ ‘๋ฏธ์‚ฌ ex) ๋งจ์†, ์„ ์ƒ๋‹˜ ์กฐ์‚ฌ ๋ฌธ๋ฒ•์ , ๊ด€๊ณ„์  ๋œป์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋‹จ์–ด ex) ์ฒ ์ˆ˜๊ฐ€ ๋ฐฅ์„ ์–ด๋ฏธ ํ™œ์šฉํ•˜์—ฌ ๋ณ€ํ•˜๋Š” ๋ถ€๋ถ„ ์„ ์–ด๋ง ์–ด๋ฏธ, ์–ด๋ง ์–ด๋ฏธ ex) ๋จน๋Š” ๋‹ค, ๋ถ„์„ํ•˜๊ฒ  ์Šต๋‹ˆ๋‹ค. ex) ์–ด๋จธ๋‹ˆ๊ฐ€ ์ฑ…์„ ์ฝ์œผ์…จ๊ฒ ๋„ค์š” ์–ด๋จธ๋‹ˆ ๊ฐ€ ์ฑ… ์„ ์ฝ ์œผ์‹œ ์—ˆ ๊ฒ  ๋„ค์š” ๋ช‡ ๊ฐœ์˜ ๋ฌธ์žฅ์„ ํ†ตํ•ด ํ˜•ํƒœ์†Œ ๋ถ„์„์„ ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ๋ช‡[๊ด€ํ˜•์‚ฌ] / ๊ฐœ[๋ช…์‚ฌ] / ์˜[์กฐ์‚ฌ] / ๋ฌธ์žฅ[๋ช…์‚ฌ] / ์„[ํ†ต[์–ด๊ทผ] / ํ•ด[ํ•˜[์ ‘๋ฏธ์‚ฌ] / ์•ผ[์—ฌ๋ง์–ด๋ฏธ]]/ ๊ฒ [์„ ์–ด๋ง์–ด๋ฏธ] / ์Šต๋‹ˆ๋‹ค[์–ด๋ง์–ด๋ฏธ] ํ˜•ํƒœ[๋ช…์‚ฌ]/ ์†Œ[๋ช…์‚ฌ] / ๋ถ„์„[๋ช…์‚ฌ] / ์„[์กฐ์‚ฌ..

๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)/๐Ÿ—จ๏ธ Linguistic Engineering

[Semantics & Pragmatics] Thematic Roles - ์˜๋ฏธ์—ญ

Thematic Roles (์˜๋ฏธ์—ญ) Thematic [ฦŸ] roles (์˜๋ฏธ์—ญ) : ๋™์‚ฌ์˜ ์ธ์ˆ˜์™€ ๋™์‚ฌ๊ฐ€ ์„ค๋ช…ํ•˜๋Š” ์ƒํ™ฉ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ํ‘œํ˜„ Agent: the ‘doer’ of the action ์–ด๋–ค ํ–‰๋™์˜ ‘์‹คํ–‰์ž’ Theme: the ‘undergoer’ of the action ํ–‰๋™์˜ ‘๋ฐœ๋‹จ’ Goal: the endpoint of a change in location or possession ์œ„์น˜ & ์†Œ์œ ๊ถŒ ๋ณ€๊ฒฝ์˜ ๋ Source: where the action originates ๋™์ž‘์ด ๋ฐœ์ƒํ•˜๋Š”๊ณณ Instrument: the means used to accomplish an action ์–ด๋–ค ์ˆ˜๋‹จ์„ ๊ฐ€์ง€๊ณ  ์™„์„ฑํ•œ๊ฑฐ - key ๊ฐ™์€ ๊ฐœ๋… ์–ด๋–ค ํ–‰๋™์„ ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋Š” ์ˆ˜๋‹จ Experience..

๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)/๐Ÿ—จ๏ธ Linguistic Engineering

[Semantics & Pragmatics] Lexical Semantics - ์–ดํœ˜ ์˜๋ฏธ๋ก 

Lexical Semantics: Reference & Sense Referent (์ง€์‹œ ๋Œ€์ƒ): ๋‹จ์–ด๋กœ ์ง€์ •๋œ ์‹ค์ œ ์‚ฌ๋ฌผํ•œ ๋‹จ์–ด๊ฐ€ ์–ด๋–ค ๊ฐ€๋ฆฌํ‚ค๋Š” ๋Œ€์ƒ์ด ์žˆ๋Š” ๊ฒƒ. ๐Ÿ’ก Example Jack, the happy swimmer, my friend, and that guy can all have the same referent in the sentence Jack swims. -> Jack = the happy swimmer = my friend = that guy ๊ฐ„๋‹จํ•ด ๋ณด์ด์ง€๋งŒ, ๋˜‘๊ฐ™์€ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”๊ฑธ ์ง€์นญํ•˜๋Š” ๊ฑด ์‰ฝ์ง€๊ฐ€ ์•Š๋‹ค. ์˜๋ฏธ๋ฅผ ํŒŒ์•…ํ•ด์•ผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. - ์ง€์‹œ ๋Œ€์ƒ์ด ๊ฐ™์•„๋„ ์˜๋ฏธ๊ฐ€ ๋‹ค๋ฅด๋ฉด ๊ฐ™๋‹ค๊ณ  ํ•  ์ˆ˜ ์—†๋‹ค. ๐Ÿ’ก Example Superman, born Kal-El and legally n..

๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)/๐Ÿ—จ๏ธ Linguistic Engineering

[Semantics & Pragmatics] The meaning of language - ์˜๋ฏธ๋ก , ์–ด์šฉ๋ก 

Semantics (& Pragmatics) Semantics (& Pragmatics) - The meaning of language When Compositionality Goes Awry: Anomaly Sentential Semantics (๋ฌธ์žฅ ์˜๋ฏธ๋ก ) ํ™”์ž๊ฐ€ ๋ฌธ์žฅ ์˜๋ฏธ์— ๋Œ€ํ•ด ์•„๋Š” ๊ฒƒ ๐Ÿ’ก Example Truth Entailment and Related Notions Ambiguity Compositional Semantics (๊ตฌ์„ฑ ์˜๋ฏธ๋ก ) When Compositionality Goes Awry ๐Ÿ’ก Example Anomaly Metaphor Idioms Lexical Semantics (Word Meanings) - ์–ดํœ˜ ์˜๋ฏธ๋ก  (๋‹จ์–ด ์˜๋ฏธ) ๐Ÿ’ก Example Theories of Wor..

๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)/๐Ÿ“• Natural Language Processing

[NLP] ์ฒ˜์Œ ๋งŒ๋‚˜๋Š” ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ & Transfer Learning

๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ชจ๋ธ ๐Ÿ’ก ๋ชจ๋ธ(Model): ์ž…๋ ฅ์„ ๋ฐ›์•„ ์–ด๋–ค ์ฒ˜๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ํ•จ์ˆ˜, ์ž์—ฐ์–ด์ฒ˜๋ฆฌ์—์„œ์˜ input์€ ์ž์—ฐ์–ด ๐Ÿ’ก ๋ชจ๋ธ์˜ ์ถœ๋ ฅ์€ ํ™•๋ฅ ์ด๋ผ๋Š” ์ ์— ์ฃผ๋ชฉ์„ ํ•ด์•ผํ•œ๋‹ค. ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ชจ๋ธ์˜ ์ถœ๋ ฅ๋„ ํ™•๋ฅ  → ๊ทธ๋Ÿฌ๋‚˜, ๋ชจ๋ธ์˜ ์ถœ๋ ฅ ํ˜•ํƒœ๋Š” ํ™•๋ฅ , ์‚ฌ๋žŒ์ด ์›ํ•˜๋Š”๊ฑด ์ž์—ฐ์–ด ํ˜•ํƒœ. ๊ทธ๋Ÿฌ๋ฉด ์ถœ๋ ฅ๋œ ํ™•๋ฅ ์„ ํ›„์ฒ˜๋ฆฌ ํ•ด์„œ ์ž์—ฐ์–ด ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜์„ ํ•ด์•ผํ•œ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์—์„œ๋Š” ๋ฐ์ดํ„ฐ์— ‘๊ฐ์„ฑ’ ์ด๋ผ๋Š” ๋ ˆ์ด๋ธ”์„ ๋‹ฌ์•„ ๋†“์€ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ์–ด์•ผ ํ•œ๋‹ค. → ์ด๊ฑธ ํ•™์Šต ๋ฐ์ดํ„ฐ ๋ผ๊ณ  ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ชจ๋ธ์ด ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด์„ ์Šค์Šค๋กœ ์ตํžˆ๊ฒŒ ํ•˜๋Š” ๊ณผ์ • → ํ•™์Šต(train) Transfer Learning ๐Ÿ’ก ํŠธ๋žœ์Šคํผ ๋Ÿฌ๋‹: ํŠน์ • Task๋ฅผ ํ•™์Šตํ•œ ๋ชจ๋ธ์„ ๋‹ค๋ฅธ ํ…Œ์Šคํฌ ์ˆ˜ํ–‰์— ์žฌ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ๋ฒ•์„ ๊ฐ€๋ฆฌํ‚ด ํŠธ๋žœ์Šคํผ ์ ์šฉ์‹œ ๊ธฐ์กด๋ณด๋‹ค ๋ชจ๋ธ์˜ ํ•™์Šต ์†..

๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)/๐Ÿ—จ๏ธ Linguistic Engineering

[Syntax] Syntactic analysis in NLP - NLP์—์„œ ๊ตฌ๋ฌธ๋ถ„์„

Syntactic analysis in NLP Parsing - PP & NP์˜ ๋ฐ˜๋ณต.. Counsituency Parsing์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•œ ๊ฒƒ์ด Dependency Parsing Counsituency Parsing Structure Tree Dependenxy Parsing Structure Tree Dependent Grammer head๊ฐ€ dependent ์ผ ๋•Œ ๋„ ์žˆ๊ณ  ์„œ๋กœ ๋ฐ˜๋Œ€์ผ ์ˆ˜๋„ ์žˆ๋‹ค. ์ข…์†์„ฑ์— ๊ธฐ๋ฐ˜ Dependency Structure๋Š” Word(head)์™€ ๊ทธ๊ฒƒ์˜ Dependent๊ณผ์˜ ๊ด€๊ณ„์— ์˜ํ•ด ๊ฒฐ์ •๋œ๋‹ค. ์˜๋ฏธ์ ์œผ๋กœ ๊ด€๊ณ„๊ฐ€ ์žˆ๋Š”๊ฒƒ ๋“ค๋งŒ ์—ฐ๊ฒฐ๋œ๋‹ค. - ์˜๋ฏธ์ ์œผ๋กœ๋งŒ ์—ฐ๊ฒฐ๋˜๋ฉด ๋ฌถ์„์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๋น„๊ต์  ์ž์œ ๋กœ์šด๊ฒƒ์ด ํŠน์ง• ์ž์œ  ์–ด์ˆœ(Free word order)์˜ ์–ธ์–ด ๋ถ„์„์— ๋งค์šฐ ์ ํ•ฉ P..

Bigbread1129
'๐Ÿ“ NLP (์ž์—ฐ์–ด์ฒ˜๋ฆฌ)' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (3 Page)