nlp

📝 NLP (자연어처리)/📕 Natural Language Processing

[NLP] 처음 만나는 자연어 처리 & Transfer Learning

딥러닝 기반 자연어 처리 모델 💡 모델(Model): 입력을 받아 어떤 처리를 수행하는 함수, 자연어처리에서의 input은 자연어 💡 모델의 출력은 확률이라는 점에 주목을 해야한다. 자연어처리 모델의 출력도 확률 → 그러나, 모델의 출력 형태는 확률, 사람이 원하는건 자연어 형태. 그러면 출력된 확률을 후처리 해서 자연어 형태로 변환을 해야한다. 딥러닝 모델에서는 데이터에 ‘감성’ 이라는 레이블을 달아 놓은 데이터가 있어야 한다. → 이걸 학습 데이터 라고 한다. 그리고 모델이 데이터의 패턴을 스스로 익히게 하는 과정 → 학습(train) Transfer Learning 💡 트랜스퍼 러닝: 특정 Task를 학습한 모델을 다른 테스크 수행에 재사용하는 기법을 가리킴 트랜스퍼 적용시 기존보다 모델의 학습 속..

📝 NLP (자연어처리)/🗨️ Linguistic Engineering

[Syntax] Syntactic analysis in NLP - NLP에서 구문분석

Syntactic analysis in NLP Parsing - PP & NP의 반복.. Counsituency Parsing의 단점을 보완한 것이 Dependency Parsing Counsituency Parsing Structure Tree Dependenxy Parsing Structure Tree Dependent Grammer head가 dependent 일 때 도 있고 서로 반대일 수도 있다. 종속성에 기반 Dependency Structure는 Word(head)와 그것의 Dependent과의 관계에 의해 결정된다. 의미적으로 관계가 있는것 들만 연결된다. - 의미적으로만 연결되면 묶을수 있으므로 비교적 자유로운것이 특징 자유 어순(Free word order)의 언어 분석에 매우 적합 P..

📝 NLP (자연어처리)/🗨️ Linguistic Engineering

[Syntax] Sentence Structure - 문장 구조

Sentence Sentence Structure “The child found the puppy” 문장은 다음과 같은 템플릿을 기반으로 한다고 말할 수 있다. Det—N—V—Det—N 이것은 문장이 내부 구조가 없는 단어의 문자열에 불과하다는 것을 의미 문장은 한층 짜리 뚜렷한 구조로 이루어져 있지 않고, 계층적 구조 로 이루어져 있다. 이 문장은 실제로 여러 그룹으로 나눌 수 있다 어떻게 결합하는 지에 따라 말의 의미가 달라진다. 💡 example [the child] [found a puppy] [the child] [found [a puppy]] [[the] [child]] [[found] [[a] [puppy]] 트리 다이어그램은 문장의 계층 구조를 보여주는 데 사용된다. Syntactic Ca..

📝 NLP (자연어처리)/🗨️ Linguistic Engineering

[Syntax] Syntax Intro - 구문

Syntax - 문장의 pattern 연구 (문법) Syntax 모든 인간 언어를 구사하는 사람은 무한한 수의 가능한 문장을 생산하고 이해할 수 있다. 하지만, 우리는 가능한 모든 문장들에 대한 mental dictionary을 가질 수 없다. 오히려, 우리는 우리의 뇌에 저장된 문장을 형성하기 위한 규칙을 가지고 있습니다. What Grammaticality Is Not Based On 문법성 은 의미 & 진실성에 기초 하지 않는다. 💡 example Enormous crickets in pink socks danced at the prom. 무도회에서 분홍색 양말을 신은 거대한 귀뚜라미가 춤을 추었다. 귀뚜라미가 춤을 추었다는건 → 말이 되지 않음. 문법은 맞아도 말이 되지 않는다. → 그렇지만 Di..

📝 NLP (자연어처리)/🗨️ Linguistic Engineering

[Words] Words - 단어

The Words of Language 단어는 언어적 지식의 중요한 부분 & 문법의 구성 요소를 구성 우리가 아는 모든 단어는 mental dictionary를 가지고 있다. Pronunciation (발음) Meaning (의미) Orthography (Spelling) - 맞춤법 Grammatial Category (문법 범주) Morphology (형태소) 형태소 라고 하는 작은 단위로 본다. 유한한 데이터에서 만들어 내지만 유한한 규칙이 있다. example) 나는 학교에 간다, 하늘을 나는 새 실제로 Morphological Persing하면 똑같은 나는 이지만 나 → 대명사, 조사 생각만 난다. Normalization (표준화) 문장을 나누려면 문장부호 가 있어야 한다, 부호 없어도 나눠야 ..

📝 NLP (자연어처리)/🗨️ Linguistic Engineering

[Intro] Introduction to Language Engineering - 언어공학개론

1. 언어공학개론 서론 1) 문맥의 중요성 한국어는 한국어의 특징, 영어는 영어의 특징이 있다. 한국어를 영어로 해석한다고 해서 1:1로 대응하여 단어 하나하나를 해석하지는 않을 것이다. 문맥의 중요성 상황이 달라지면 T, F가 달라질 수 있듯이 어떠한 명제도 참이라고 하기엔 어려우나 보통 그런 명제들은 ‘이시대 모든 사람들이 생각하는 공통점’과 같은 맥락에서 생각해야한다. 생각해야할 사항 인간이 이해하기엔 당연하고 쉬운 일이지만, 인간이 언어를 이해할 때 자연스럽고 당연하다고 느끼는 것이 컴퓨터에겐 어렵다. 딥러닝에 적용하기엔 어려운 인간의 규칙이, 딥러닝을 활용함으로써 오히려 더 쉽게 활용할 수 있기도 하다. 우리가 어떻게 언어를 이해하는지? (컴퓨터와 다른 점) 컴퓨터가 인간의 언어를 이해하는 방향..

Bigbread1129
'nlp' 태그의 글 목록 (4 Page)