๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Clustering Algoritm (๊ตฐ์ง‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜)

Target์„ ๋ชจ๋ฅด๋Š” Unsupervised Learning(๋น„์ง€๋„ ํ•™์Šต)Target์„ ๋ชจ๋กœ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ข…๋ฅ˜๋ณ„๋กœ ๋ถ„๋ฅ˜ํ•˜๋ ค๊ณ  ํ• ๋•Œ ์‚ฌ์šฉํ•˜๋Š” ML ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์žˆ์Šต๋‹ˆ๋‹ค.๋ฐ”๋กœ Unsuperivsed Learning (๋น„์ง€๋„ ํ•™์Šต) ์ž…๋‹ˆ๋‹ค. ์‚ฌ๋žŒ์ด ์•Œ๋ ค์ฃผ์ง€ ์•Š์•„๋„, ๋ฐ์ดํ„ฐ์— ์žˆ๋Š” ๋ฌด์–ธ๊ฐ€๋ฅผ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜์‹œ๋ฉด ํŽธํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋Ÿฌ๋ฉด ํ•œ๋ฒˆ ๋ฐ์ดํ„ฐ๋ฅผ ์ค€๋น„ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.Data ์ค€๋น„ํ•˜๊ธฐ์‚ฌ๊ณผ, ๋ฐ”๋‚˜๋‚˜, ํŒŒ์ธ์• ํ”Œ๋กœ ๊ตฌ์„ฑ๋œ ํ‘์ƒ‰ ์‚ฌ์ง„์˜ ๊ณผ์ผ ๋ฐ์ดํ„ฐ๋ฅผ ์ค€๋น„ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.!wget https://bit.ly/fruits_300_data -O fruits_300.npy--2023-07-16 14:21:20-- https://bit.ly/fruits_300_dataResolving bit.ly (bit.ly)... 67.199...

๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Tree's Ensemble - Gradient Boosting (๊ทธ๋ ˆ์ด์–ธํŠธ ๋ถ€์ŠคํŒ…)

Gradient Boosting (๊ทธ๋ ˆ์ด์–ธํŠธ ๋ถ€์ŠคํŒ…)๊ทธ๋ ˆ์ด๋””์–ธํŠธ ๋ถ€์ŠคํŒ…(Gradient Boosting)์€ ์–•์€ ๊ฒฐ์ • ํŠธ๋ฆฌ๋“ค์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ „ ํŠธ๋ฆฌ์˜ ์˜ค์ฐจ๋ฅผ ๋ณด์™„ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์•™์ƒ๋ธ”์„ ๊ตฌ์„ฑํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.์‚ฌ์ดํ‚ท๋Ÿฐ์˜ GradientBoostingClassifier๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ ๊นŠ์ด๊ฐ€ 3์ธ ๊ฒฐ์ • ํŠธ๋ฆฌ๋ฅผ 100๊ฐœ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์–•์€ ๊ฒฐ์ • ํŠธ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณผ๋Œ€์ ํ•ฉ์— ๊ฐ•ํ•˜๊ณ , ์ผ๋ฐ˜์ ์œผ๋กœ ๋†’์€ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.'๊ทธ๋ ˆ์ด๋””์–ธํŠธ'๋ผ๋Š” ์ด๋ฆ„์—์„œ ์•Œ ์ˆ˜ ์žˆ๋“ฏ์ด, ์ด ๋ฐฉ๋ฒ•์€ ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ํŠธ๋ฆฌ๋ฅผ ์•™์ƒ๋ธ”์— ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ๋ถ„๋ฅ˜ ๋ฌธ์ œ์—์„œ๋Š” ๋กœ์ง€์Šคํ‹ฑ ์†์‹ค ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , ํšŒ๊ท€ ๋ฌธ์ œ์—์„œ๋Š” ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์˜ ์›๋ฆฌ์ฒ˜๋Ÿผ, ๊ทธ๋ ˆ์ด๋””์–ธํŠธ ๋ถ€์ŠคํŒ…์€ ์†์‹ค ํ•จ์ˆ˜์˜ ์ตœ์†Œ์ ์„ ์ฐพ๊ธฐ ์œ„ํ•ด ๋ชจ๋ธ..

๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Tree's Ensemble - Extra Tree (์—‘์ŠคํŠธ๋ผ ํŠธ๋ฆฌ)

Extra Trees (์—‘์ŠคํŠธ๋ผ ํŠธ๋ฆฌ)์—‘์ŠคํŠธ๋ผ ํŠธ๋ฆฌ(Extra Trees)๋Š” ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ์™€ ๋งค์šฐ ์œ ์‚ฌํ•˜๊ฒŒ ๋™์ž‘ํ•˜๋ฉฐ, ๊ธฐ๋ณธ์ ์œผ๋กœ 100๊ฐœ์˜ ๊ฒฐ์ • ํŠธ๋ฆฌ๋ฅผ ํ›ˆ๋ จํ•ฉ๋‹ˆ๋‹ค.์ด ๋ชจ๋ธ์€ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฐ์ • ํŠธ๋ฆฌ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์ง€์›ํ•˜๊ณ , ์ผ๋ถ€ ํŠน์„ฑ์„ ๋žœ๋คํ•˜๊ฒŒ ์„ ํƒํ•˜์—ฌ ๋…ธ๋“œ๋ฅผ ๋ถ„ํ• ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ์™€ ์—‘์ŠคํŠธ๋ผ ํŠธ๋ฆฌ์˜ ์ฃผ์š” ์ฐจ์ด์ ์€ ๋ถ€ํŠธ์ŠคํŠธ๋žฉ ์ƒ˜ํ”Œ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.์ฆ‰, ๊ฐ ๊ฒฐ์ • ํŠธ๋ฆฌ๋ฅผ ๋งŒ๋“ค ๋•Œ ์ „์ฒด ํ›ˆ๋ จ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋Œ€์‹ , ๋…ธ๋“œ๋ฅผ ๋ถ„ํ• ํ•  ๋•Œ ๊ฐ€์žฅ ์ข‹์€ ๋ถ„ํ• ์„ ์ฐพ์ง€ ์•Š๊ณ  ๋ฌด์ž‘์œ„๋กœ ๋ถ„ํ• ํ•ฉ๋‹ˆ๋‹ค.์‚ฌ์‹ค, ์ด์ „์— DecisionTreeClassifier์˜ spliter ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ 'random'์œผ๋กœ ์„ค์ •ํ•œ ๊ฒƒ์ด ๋ฐ”๋กœ ์—‘์ŠคํŠธ๋ผ ํŠธ๋ฆฌ์—์„œ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.๊ฐ ๊ฒฐ์ • ํŠธ๋ฆฌ์—์„œ ํŠน์„ฑ์„ ๋ฌด..

๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Tree's Ensemble - Random Forest (๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ)

์ •ํ˜• ๋ฐ์ดํ„ฐ์™€ ๋น„์ •ํ˜• ๋ฐ์ดํ„ฐ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ์— ๋Œ€ํ•ด ๋ฐฐ์šฐ๊ธฐ ์ „์— ์šฐ๋ฆฌ๊ฐ€ ๋‹ค๋ฃจ์—ˆ๋˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋˜๋Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.๊ธธ์ด, ๋†’์ด, ๋ฌด๊ฒŒ ๋“ฑ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ๋Š” CSV ํŒŒ์ผ์— ๊ฐ€์ง€๋Ÿฐํžˆ ์ •๋ฆฌ๋˜์–ด ์žˆ์—ˆ์ฃ .์ด๋ฒˆ์—๋„ ์‚ฌ์šฉํ•œ ์™€์ธ ๋ฐ์ดํ„ฐ๋„ CSV ํŒŒ์ผ์ด์—ˆ์Šต๋‹ˆ๋‹ค.# CSV ํŒŒ์ผ ์˜ˆ์‹œlength, height, width8.4, 2.11, 1.4113.7, 3.53, 2.0์ด๋Ÿฐ ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ •ํ˜• ๋ฐ์ดํ„ฐ(structured data)๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค. ์‰ฝ๊ฒŒ ๋งํ•ด, ์–ด๋–ค ๊ตฌ์กฐ๋กœ ๋˜์–ด์žˆ๋‹ค๋Š” ๋œป์ด์ฃ .์ด๋Ÿฐ ๋ฐ์ดํ„ฐ๋Š” CSV๋‚˜ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค(DataBase), ํ˜น์€ ์—‘์…€(Excel)์— ์ €์žฅํ•˜๊ธฐ ์‰ฝ์Šต๋‹ˆ๋‹ค.์˜จ๋ผ์ธ ์‡ผํ•‘๋ชฐ์— ์ง„์—ด๋œ ์ƒํ’ˆ๊ณผ ์šฐ๋ฆฌ๊ฐ€ ๊ตฌ๋งคํ•œ ์‡ผํ•‘ ์ •๋ณด๋Š” ๋ชจ๋‘ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ์ €์žฅ๋˜๋Š” ์ •ํ˜• ๋ฐ์ดํ„ฐ์— ์†ํ•ฉ๋‹ˆ๋‹ค.์‚ฌ์‹ค ํ”„๋กœ๊ทธ๋ž˜๋จธ๊ฐ€ ..

๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Cross-Validation & Grid Search

Validation Set (๊ฒ€์ฆ ์„ธํŠธ)Test Dataset์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์œผ๋ฉด ๋ชจ๋ธ์ด ๊ณผ๋Œ€์ ํ•ฉ์ธ์ง€ ๊ณผ์†Œ์ ํ•ฉ์ธ์ง€ ํŒ๋‹จํ•˜๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.ํ…Œ์ŠคํŠธ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์ด๋ฅผ ์ธก์ •ํ•˜๋Š” ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์€ Training Dataset์„ ๋‚˜๋ˆ„๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.์ด ๋‚˜๋ˆˆ Dataset๋ฅผ Validation Set (๊ฒ€์ฆ ์„ธํŠธ)๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.์ „์ฒด ๋ฐ์ดํ„ฐ์…‹์ด 100%๋ผ๊ณ  ํ•˜๋ฉด ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹ ์ค‘์—์„œ 20%๋งŒ Test Dataset์œผ๋กœ ๋งŒ๋“ค๊ณ , 80%๋ฅผ Train Dataset์œผ๋กœ ๊ตฌ์„ฑํ–ˆ์œผ๋ฉด, ์ด Training Dataset์ค‘ 20%๋ฅผ ๋–ผ์–ด ๋‚ด์–ด์„œ Validation Dataset์œผ๋กœ ๋‚˜๋ˆ•๋‹ˆ๋‹ค.Training Dataset์—์„œ Model์„ Trainingํ•˜๊ณ  Validation Set๋กœ ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.์ด๋Ÿฐ์‹์œผ๋กœ Test ํ•˜๊ณ  ์‹ถ..

๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Decision Tree (๊ฒฐ์ • ํŠธ๋ฆฌ)

Logistic Regression (๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€) ๋กœ ์™€์ธ ๋ถ„๋ฅ˜ํ•˜๊ธฐ์™€์ธ์„ ๋ถ„๋ฅ˜ ํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ผ๋‹จ ๋ฐ์ดํ„ฐ์…‹์„ ๋ถˆ๋Ÿฌ์˜ค๊ฒ ์Šต๋‹ˆ๋‹ค.import pandas as pdwine = pd.read_csv('https://bit.ly/wine_csv_data')wine.head()์ด๋ ‡๊ฒŒ ๋ฐ์ดํ„ฐ์…‹์„ Pandas DataFrame์œผ๋กœ ์ž˜ ๋ถˆ๋Ÿฌ ์™”๋Š”์ง€ head() Method๋กœ ํ•œ๋ฒˆ ๋ถˆ๋Ÿฌ์™”์Šต๋‹ˆ๋‹ค.์ฒ˜์Œ 3๊ฐœ์˜ ์—ด(alcohol, suger, pH)๋Š” ์•Œ์ฝ”์˜ฌ ๋„์ˆ˜, ๋‹น๋„, pH(์‚ฐ๋„)๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.class๋Š” ํƒ€๊นƒ๊ฐ’์ด 0์ด๋ฉด ๋ ˆ๋“œ์™€์ธ, 1์ด๋ฉด ํ™”์ดํŠธ ์™€์ธ ์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.์ด๊ฑด ๋ ˆ๋“œ & ํ™”์ดํŠธ ์™€์ธ์„ ๊ตฌ๋ถ„ํ•˜๋Š” Binary Classification(์ด์ง„ ๋ถ„๋ฅ˜)๋ฌธ์ œ ์ธ๊ฑฐ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ฆ‰, ์ „์ฒด ์™€์ธ์˜ ๋ฐ์ดํ„ฐ์—์„œ ํ™”์ดํŠธ ์™€์ธ์„ ๊ณจ๋ผ๋‚ด..

๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Stochastic Gradient Descent (ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•)

ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•(Stochastic Gradient Descent)์€ ์ ์ง„์  ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ๊ทธ ์ „์— ์ ์ง„์  ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•˜์—ฌ ์„ค๋ช…์„ ๋“œ๋ฆฌ๋ฉด, ์ด์ „์— ํ›ˆ๋ จํ•œ ๋ชจ๋ธ์„ ๋ฒ„๋ฆฌ๊ณ  ์ƒˆ๋กœ์šด ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ, ๊ธฐ์กด์˜ ํ›ˆ๋ จํ•œ ๋ชจ๋ธ์€ ๊ทธ๋Œ€๋กœ ๋‘๊ณ , ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์— ๋ฐํ•œ ํ›ˆ๋ จ์„ ๊ธฐ์กด์˜ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ํ•™์Šต ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ž…๋‹ˆ๋‹ค.๊ทธ๋ž˜์„œ ๋ณธ๋ก ์œผ๋กœ ๋Œ์•„์˜ค๋ฉด, ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์—์„œ ํ™•๋ฅ ์ ์ด๋ž€ ๋ง์€ '๋ฌด์ž‘์œ„ํ•˜๊ฒŒ' ํ˜น์€ '๋žœ๋คํ•˜๊ฒŒ' ์˜ ๊ธฐ์ˆ ์ ์ธ ํ‘œํ˜„์ž…๋‹ˆ๋‹ค.๊ทธ๋ฆฌ๊ณ  ๊ฒฝ์‚ฌ๋Š”, ๊ธฐ์šธ๊ธฐ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, ๊ทธ๋Ÿฌ๋ฉด ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์€ ๊ฒฝ์‚ฌ๋ฅผ ๋”ฐ๋ผ ๋‚ด๋ ค๊ฐ€๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•์˜ ํŠน์ง•์€ ๊ฐ€์žฅ ๊ฐ€ํŒŒ๋ฅธ ๊ฒฝ์‚ฌ๋ฅผ ๋”ฐ๋ผ ์›ํ•˜๋Š” ์ง€์ ์— ๋„๋‹ฌํ•˜๋Š”๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ์‚ผ๊ณ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค๋งŒ, ๊ฐ€ํŒŒ๋ฅธ ๊ฒฝ์‚ฌ๋ฅผ ๋‚ด๋ ค๊ฐˆ๋•Œ์—..

๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Logistic Regression (๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€)

๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋Ÿญํ‚ค๋ฐฑ์˜ ํ™•๋ฅ K-์ตœ๊ทผ์ ‘ ์ด์›ƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ๋ณ€ ์ด์›ƒ์„ ์ฐพ์•„์ฃผ๋‹ˆ๊นŒ ์ด์›ƒ์˜ ํด๋ž˜์Šค ๋น„์œจ์„ ํ™•๋ฅ ์ด๋ผ๊ณ  ์ถœ๋ ฅํ•˜๋ฉด ๋ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.๋ณด๋ฉด ์ƒ˜ํ”Œ X ์ฃผ์œ„์— ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ด์›ƒ ์ƒ˜ํ”Œ 10๊ฐœ๋ฅผ ํ‘œ์‹œํ–ˆ์Šต๋‹ˆ๋‹ค. ์‚ผ๊ฐํ˜•์ด 5๊ฐœ, ์‚ฌ๊ฐํ˜•์ด 3๊ฐœ, ์› 2๊ฐœ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.์ด์›ƒํ•œ ์ƒ˜ํ”Œ์˜ ํด๋ž˜์Šค๋ฅผ ํ™•๋ฅ ๋กœ ์‚ผ๋Š”๋‹ค๋ฉด ์ƒ˜ํ”Œ X๊ฐ€ ์‚ฌ๊ฐํ˜•์ด ํ™•๋ฅ ์€ 30%, ์‚ผ๊ฐํ˜•์ผ ํ™•๋ฅ ์€ 50%, ์›์ธ ํ™•๋ฅ ์€ 20%์ž…๋‹ˆ๋‹ค.Scikit-learn์˜ K-์ตœ๊ทผ์ ‘ ์ด์›ƒ ๋ถ„๋ฅ˜๊ธฐ๋„ ์ด์™€ ๋™์ผํ•œ ๋ฐฉ์‹์œผ๋กœ Class ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜์—ฌ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํ•œ๋ฒˆ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์™€์„œ ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.๋ฐ์ดํ„ฐ ์ค€๋น„import pandas as pdfish = pd.read_csv('https://bit.ly/fish_csv_data')fish.head()# Species(7๊ฐœ์˜ ์ƒ..

๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ML] ํŠน์„ฑ ๊ณตํ•™๊ณผ ๊ทœ์ œ

๋‹ค์ค‘ ํšŒ๊ท€(Characteristic Engineering and Regulation)๋‹ค์ค‘ ํšŒ๊ท€์—ฌ๋Ÿฌ๊ฐœ์˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ•œ ์„ ํ˜• ํšŒ๊ท€(Linear Regression)๋ฅผ ๋‹ค์ค‘ ํšŒ๊ท€(Multiple Regression)์ด๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.1๊ฐœ์˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ–ˆ์„๋•Œ, ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์ด ํ•™์Šต ํ•˜๋Š”๊ฒƒ์€ ์ง์„ ์ž…๋‹ˆ๋‹ค. 2๊ฐœ์˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ•˜๋ฉด ์„ ํ˜• ํšŒ๊ท€๋Š” ํ‰๋ฉด์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.์™ผ์ชฝ ๊ทธ๋ฆผ์ด 1๊ฐœ์˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ•œ ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์ด ํ•™์Šต ํ•˜๋Š” ๋ชจ๋ธ, ์˜ค๋ฅธ์ชฝ ๊ทธ๋ฆผ์ด 2๊ฐœ์˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ•œ ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.์˜ค๋ฅธ์ชฝ ๊ทธ๋ฆผ์ฒ˜๋Ÿผ ํŠน์„ฑ์ด 2๊ฐœ๋ฉด Target๊ฐ’๊ณผ ํ•จ๊ป˜ 3์ฐจ์› ๊ณต๊ฐ„์„ ํ˜•์„ฑํ•˜๊ณ  ์„ ํ˜• ํšŒ๊ท€ ๋ฐฉ์ •์‹์€ ํ‰๋ฉด์ด ๋ฉ๋‹ˆ๋‹ค.Target = a x ํŠน์„ฑ1 + b x ํŠน์„ฑ2 + ์ ˆํŽธ๊ทธ๋Ÿฌ๋ฉด ํŠน์„ฑ์ด 3๊ฐœ์ผ ๊ฒฝ์šฐ์—๋Š”? ์šฐ๋ฆฌ๋Š” 3์ฐจ์› ๊ณต๊ฐ„์„ ๊ทธ๋ฆฌ๊ฑฐ๋‚˜ ์ƒ์ƒํ• ..

๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Linear Regression

K-์ตœ๊ทผ์ ‘ ์ด์›ƒ์˜ ํ•œ๊ณ„K-์ตœ๊ทผ์ ‘ ์ด์›ƒ ๋ชจ๋ธ์˜ ํ•œ๊ณ„๋Š” ๋งŒ์•ฝ ์ƒˆ๋กœ์šด ์ƒ˜ํ”Œ์˜ ๊ฐ’์ด Training_set์˜ ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚˜๋ฉด ์—‰๋šฑํ•œ ๊ฐ’์„ ์˜ˆ์ธกํ• ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.ํ•œ๋ฒˆ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ ์ „์— ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ๋ž‘ ๋ชจ๋ธ์„ ์ค€๋น„ํ•ด์„œ ํ•œ๋ฒˆ ๋Œ๋ ค๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.import numpy as npperch_length = np.array([8.4, 13.7, 15.0, 16.2, 17.4, 18.0, 18.7, 19.0, 19.6, 20.0, 21.0, 21.0, 21.0, 21.3, 22.0, 22.0, 22.0, 22.0, 22.0, 22.5, 22.5, 22.7, 23.0, 23.5, 24.0, 24.0, 24.6, 25.0, 25.6, 26.5, 27.3, 27.5, 27.5, 27.5, 28.0, 2..

Bigbread1129
'๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ ' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก