정신이 없어서 이어서 쓰는걸 까먹었네요.. 열심히 써보겠습니다 ㅠKeras YOLO Open source Package 특징더 쉬운 환경 설정Keras 기반의 YOLO 패키지는 Darknet YOLO 프레임워크에 비해 환경 설정이 더 간단합니다. Keras는 Python을 기반으로 한 딥러닝 워크플로우와 잘 통합되며, 더 사용자 친화적인 인터페이스를 제공하여 다양한 사용자가 접근하기 쉽습니다.Keras의 Callbacks, TensorBoard, Preprocessing 기능 활용Keras는 Callbacks 기능을 제공하여 학습 과정 중에 동적으로 모니터링하고 조정할 수 있습니다. 예를 들어, 조기 종료(early stopping)나 학습 속도 스케줄링(learning rate scheduling) 등..
정신이 없어서 이어서 쓰는걸 까먹었네요.. 열심히 써보겠습니다 ㅠ# 현재 디렉토리는 /content이며 이 디렉토리를 기준으로 실습코드와 데이터를 다운로드 합니다. !pwd!rm -rf DLCV!git clone https://github.com/chulminkw/DLCV.git# DLCV 디렉토리가 Download되고 DLCV 밑에 Detection과 Segmentation 디렉토리가 있는 것을 확인!ls -lia !ls -lia DLCVOpenCV Darknet YOLO를 이용하여 image & 영상 Object Detection여기선 YOLO와 tiny-yolo를 이용하여 Object Detection을 해보겠습니다.import cv2import matplotlib.pyplot as pltimpor..
Tensorflow에서 Pretrained 된 모델 파일을 OpenCV에서 로드하여 이미지와 영상에 대한 Object Detection을 수행해 보겠습니다.입력 이미지로 사용될 이미지 보기import cv2import matplotlib.pyplot as plt%matplotlib inlineimg = cv2.imread('../../data/image/beatles01.jpg')img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)print('image shape:', img.shape)plt.figure(figsize=(12, 12))plt.imshow(img_rgb)image shape: (633, 806, 3)Inference 모델 생성Tensorflow에서 Pretr..
OpenCV DNN 장단점OpenCV Deep Neural Network의 장단점에 데하여 알아보겠습니다.OpenCV 라이브러리는 Intel에 의하여 최초 개발 되었습니다. 장단점을 설명해보겠습니다.OpenCV DNN 장점딥러닝 개발 프레임 워크 없이 쉽게 Inference를 구현 가능 합니다.OpenCV에서 지원하는 다양한 Computer Vision 처리 및 API와 Deep learning을 쉽게 결합할 수 있다는 특징이 있습니다.OpenCV DNN 단점GPU 지원 기능이 약합니다.DNN 모듈은 과거에 NVIDIA GPU 지원이 되지 않았습니다. 2019년 10월에 Google에서 NVIDIA GPU 지원 발표했지만. 아직 환경 구성/설치가 어렵습니다. 점차 개선 작업이 진행중입니다.OpenCV는 ..