📈 Data Engineering/📇 Machine Learning
[ML] Logistic Regression (로지스틱 회귀)
이번엔 Logistic Regression (로지스틱 회귀)에 데하여 한번 알아보겠습니다.Logistic Regression (로지스틱 회귀)로지스틱 회귀(Logistic Regression)는 주로 이진 분류 문제를 해결하기 위해 사용되는 통계적 모델입니다.입력된 독립 변수들의 선형 결합을 통해 종속 변수(이진 변수)의 발생 확률을 예측합니다.로지스틱 회귀의 주요 특징 분류 알고리즘: 이진 분류 문제를 주로 해결하기 위해 사용됩니다. 다중 클래스 분류 문제에서도 확장할 수 있습니다.확률 출력: 예측 결과를 0과 1 사이의 확률 값으로 출력합니다.선형 회귀와의 차이점: 선형 회귀는 연속적인 값을 예측하지만, 로지스틱 회귀는 이진 값을 예측합니다.로지스틱 회귀의 기본 원리그러면, Logistic Regre..