๐Ÿ“ˆ Data Engineering

๐Ÿ“ˆ Data Engineering/๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Decision Tree (๊ฒฐ์ • ํŠธ๋ฆฌ)

Logistic Regression (๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€) ๋กœ ์™€์ธ ๋ถ„๋ฅ˜ํ•˜๊ธฐ์™€์ธ์„ ๋ถ„๋ฅ˜ ํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ผ๋‹จ ๋ฐ์ดํ„ฐ์…‹์„ ๋ถˆ๋Ÿฌ์˜ค๊ฒ ์Šต๋‹ˆ๋‹ค.import pandas as pdwine = pd.read_csv('https://bit.ly/wine_csv_data')wine.head()์ด๋ ‡๊ฒŒ ๋ฐ์ดํ„ฐ์…‹์„ Pandas DataFrame์œผ๋กœ ์ž˜ ๋ถˆ๋Ÿฌ ์™”๋Š”์ง€ head() Method๋กœ ํ•œ๋ฒˆ ๋ถˆ๋Ÿฌ์™”์Šต๋‹ˆ๋‹ค.์ฒ˜์Œ 3๊ฐœ์˜ ์—ด(alcohol, suger, pH)๋Š” ์•Œ์ฝ”์˜ฌ ๋„์ˆ˜, ๋‹น๋„, pH(์‚ฐ๋„)๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.class๋Š” ํƒ€๊นƒ๊ฐ’์ด 0์ด๋ฉด ๋ ˆ๋“œ์™€์ธ, 1์ด๋ฉด ํ™”์ดํŠธ ์™€์ธ ์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.์ด๊ฑด ๋ ˆ๋“œ & ํ™”์ดํŠธ ์™€์ธ์„ ๊ตฌ๋ถ„ํ•˜๋Š” Binary Classification(์ด์ง„ ๋ถ„๋ฅ˜)๋ฌธ์ œ ์ธ๊ฑฐ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ฆ‰, ์ „์ฒด ์™€์ธ์˜ ๋ฐ์ดํ„ฐ์—์„œ ํ™”์ดํŠธ ์™€์ธ์„ ๊ณจ๋ผ๋‚ด..

๐Ÿ“ˆ Data Engineering/๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Stochastic Gradient Descent (ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•)

ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•(Stochastic Gradient Descent)์€ ์ ์ง„์  ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ๊ทธ ์ „์— ์ ์ง„์  ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•˜์—ฌ ์„ค๋ช…์„ ๋“œ๋ฆฌ๋ฉด, ์ด์ „์— ํ›ˆ๋ จํ•œ ๋ชจ๋ธ์„ ๋ฒ„๋ฆฌ๊ณ  ์ƒˆ๋กœ์šด ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ, ๊ธฐ์กด์˜ ํ›ˆ๋ จํ•œ ๋ชจ๋ธ์€ ๊ทธ๋Œ€๋กœ ๋‘๊ณ , ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์— ๋ฐํ•œ ํ›ˆ๋ จ์„ ๊ธฐ์กด์˜ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ํ•™์Šต ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ž…๋‹ˆ๋‹ค.๊ทธ๋ž˜์„œ ๋ณธ๋ก ์œผ๋กœ ๋Œ์•„์˜ค๋ฉด, ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์—์„œ ํ™•๋ฅ ์ ์ด๋ž€ ๋ง์€ '๋ฌด์ž‘์œ„ํ•˜๊ฒŒ' ํ˜น์€ '๋žœ๋คํ•˜๊ฒŒ' ์˜ ๊ธฐ์ˆ ์ ์ธ ํ‘œํ˜„์ž…๋‹ˆ๋‹ค.๊ทธ๋ฆฌ๊ณ  ๊ฒฝ์‚ฌ๋Š”, ๊ธฐ์šธ๊ธฐ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, ๊ทธ๋Ÿฌ๋ฉด ํ™•๋ฅ ์  ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์€ ๊ฒฝ์‚ฌ๋ฅผ ๋”ฐ๋ผ ๋‚ด๋ ค๊ฐ€๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•์˜ ํŠน์ง•์€ ๊ฐ€์žฅ ๊ฐ€ํŒŒ๋ฅธ ๊ฒฝ์‚ฌ๋ฅผ ๋”ฐ๋ผ ์›ํ•˜๋Š” ์ง€์ ์— ๋„๋‹ฌํ•˜๋Š”๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ์‚ผ๊ณ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค๋งŒ, ๊ฐ€ํŒŒ๋ฅธ ๊ฒฝ์‚ฌ๋ฅผ ๋‚ด๋ ค๊ฐˆ๋•Œ์—..

๐Ÿ“ˆ Data Engineering/๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Logistic Regression (๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€)

๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋Ÿญํ‚ค๋ฐฑ์˜ ํ™•๋ฅ K-์ตœ๊ทผ์ ‘ ์ด์›ƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ๋ณ€ ์ด์›ƒ์„ ์ฐพ์•„์ฃผ๋‹ˆ๊นŒ ์ด์›ƒ์˜ ํด๋ž˜์Šค ๋น„์œจ์„ ํ™•๋ฅ ์ด๋ผ๊ณ  ์ถœ๋ ฅํ•˜๋ฉด ๋ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.๋ณด๋ฉด ์ƒ˜ํ”Œ X ์ฃผ์œ„์— ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ด์›ƒ ์ƒ˜ํ”Œ 10๊ฐœ๋ฅผ ํ‘œ์‹œํ–ˆ์Šต๋‹ˆ๋‹ค. ์‚ผ๊ฐํ˜•์ด 5๊ฐœ, ์‚ฌ๊ฐํ˜•์ด 3๊ฐœ, ์› 2๊ฐœ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.์ด์›ƒํ•œ ์ƒ˜ํ”Œ์˜ ํด๋ž˜์Šค๋ฅผ ํ™•๋ฅ ๋กœ ์‚ผ๋Š”๋‹ค๋ฉด ์ƒ˜ํ”Œ X๊ฐ€ ์‚ฌ๊ฐํ˜•์ด ํ™•๋ฅ ์€ 30%, ์‚ผ๊ฐํ˜•์ผ ํ™•๋ฅ ์€ 50%, ์›์ธ ํ™•๋ฅ ์€ 20%์ž…๋‹ˆ๋‹ค.Scikit-learn์˜ K-์ตœ๊ทผ์ ‘ ์ด์›ƒ ๋ถ„๋ฅ˜๊ธฐ๋„ ์ด์™€ ๋™์ผํ•œ ๋ฐฉ์‹์œผ๋กœ Class ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜์—ฌ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ํ•œ๋ฒˆ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์™€์„œ ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.๋ฐ์ดํ„ฐ ์ค€๋น„import pandas as pdfish = pd.read_csv('https://bit.ly/fish_csv_data')fish.head()# Species(7๊ฐœ์˜ ์ƒ..

๐Ÿ“ˆ Data Engineering/๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ML] ํŠน์„ฑ ๊ณตํ•™๊ณผ ๊ทœ์ œ

๋‹ค์ค‘ ํšŒ๊ท€(Characteristic Engineering and Regulation)๋‹ค์ค‘ ํšŒ๊ท€์—ฌ๋Ÿฌ๊ฐœ์˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ•œ ์„ ํ˜• ํšŒ๊ท€(Linear Regression)๋ฅผ ๋‹ค์ค‘ ํšŒ๊ท€(Multiple Regression)์ด๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.1๊ฐœ์˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ–ˆ์„๋•Œ, ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์ด ํ•™์Šต ํ•˜๋Š”๊ฒƒ์€ ์ง์„ ์ž…๋‹ˆ๋‹ค. 2๊ฐœ์˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ•˜๋ฉด ์„ ํ˜• ํšŒ๊ท€๋Š” ํ‰๋ฉด์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.์™ผ์ชฝ ๊ทธ๋ฆผ์ด 1๊ฐœ์˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ•œ ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์ด ํ•™์Šต ํ•˜๋Š” ๋ชจ๋ธ, ์˜ค๋ฅธ์ชฝ ๊ทธ๋ฆผ์ด 2๊ฐœ์˜ ํŠน์„ฑ์„ ์‚ฌ์šฉํ•œ ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.์˜ค๋ฅธ์ชฝ ๊ทธ๋ฆผ์ฒ˜๋Ÿผ ํŠน์„ฑ์ด 2๊ฐœ๋ฉด Target๊ฐ’๊ณผ ํ•จ๊ป˜ 3์ฐจ์› ๊ณต๊ฐ„์„ ํ˜•์„ฑํ•˜๊ณ  ์„ ํ˜• ํšŒ๊ท€ ๋ฐฉ์ •์‹์€ ํ‰๋ฉด์ด ๋ฉ๋‹ˆ๋‹ค.Target = a x ํŠน์„ฑ1 + b x ํŠน์„ฑ2 + ์ ˆํŽธ๊ทธ๋Ÿฌ๋ฉด ํŠน์„ฑ์ด 3๊ฐœ์ผ ๊ฒฝ์šฐ์—๋Š”? ์šฐ๋ฆฌ๋Š” 3์ฐจ์› ๊ณต๊ฐ„์„ ๊ทธ๋ฆฌ๊ฑฐ๋‚˜ ์ƒ์ƒํ• ..

๐Ÿ“ˆ Data Engineering/๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] Linear Regression

K-์ตœ๊ทผ์ ‘ ์ด์›ƒ์˜ ํ•œ๊ณ„K-์ตœ๊ทผ์ ‘ ์ด์›ƒ ๋ชจ๋ธ์˜ ํ•œ๊ณ„๋Š” ๋งŒ์•ฝ ์ƒˆ๋กœ์šด ์ƒ˜ํ”Œ์˜ ๊ฐ’์ด Training_set์˜ ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚˜๋ฉด ์—‰๋šฑํ•œ ๊ฐ’์„ ์˜ˆ์ธกํ• ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.ํ•œ๋ฒˆ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ ์ „์— ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ๋ž‘ ๋ชจ๋ธ์„ ์ค€๋น„ํ•ด์„œ ํ•œ๋ฒˆ ๋Œ๋ ค๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.import numpy as npperch_length = np.array([8.4, 13.7, 15.0, 16.2, 17.4, 18.0, 18.7, 19.0, 19.6, 20.0, 21.0, 21.0, 21.0, 21.3, 22.0, 22.0, 22.0, 22.0, 22.0, 22.5, 22.5, 22.7, 23.0, 23.5, 24.0, 24.0, 24.6, 25.0, 25.6, 26.5, 27.3, 27.5, 27.5, 27.5, 28.0, 2..

๐Ÿ“ˆ Data Engineering/๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] K-์ตœ๊ทผ์ ‘ ์ด์›ƒ ํšŒ๊ท€

K-์ตœ๊ทผ์ ‘ ์ด์›ƒ ํšŒ๊ท€K-์ตœ๊ทผ์ ‘ ์ด์›ƒ ํšŒ๊ท€์— ๋ฐํ•˜์—ฌ ์„ค๋ช…์„ ๋“œ๋ฆฌ๊ธฐ ์ „์—, ํšŒ๊ท€์— ๋Œ€ํ•˜์—ฌ ์„ค๋ช…์„ ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.ํšŒ๊ท€(Regression)์€ ์ง€๋„ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ข…๋ฅ˜์ค‘ ํ•˜๋‚˜์ด๋ฉฐ, Sample์„ ๋ช‡๊ฐœ์˜ Class์ค‘ ํ•˜๋‚˜๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.์ง€๋„ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์ค‘ ํ•˜๋‚˜์ธ ๋ถ„๋ฅ˜์™€ ๋˜‘๊ฐ™์ด ์˜ˆ์ธกํ•˜๋ ค๋Š” Sample์— ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด Sample K๊ฐœ๋ฅผ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋ฆผ์—์„œ ๋ณด์—ฌ๋“œ๋ ธ๋“ฏ์ด, ์˜ˆ๋ฅผ ๋“ค๋ฉด ์ƒ˜ํ”Œ X์˜ Target๊ฐ’์„ ๊ตฌํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ๊ฐ ์ด์›ƒํ•œ ์ƒ˜ํ”Œ์˜ ํƒ€๊ฒŸ๊ฐ’์ด 100, 80, 60 ์ด๋ฉด, ์ด๋ฅผ ํ‰๊ท ํ™”ํ•˜๋ฉด, Sample X์˜ ์˜ˆ์ธก Target๊ฐ’์€ 80์ด ๋ฉ๋‹ˆ๋‹ค.๋ฐ์ดํ„ฐ ์ค€๋น„์ด๋ฒˆ์—๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ Numpy ๋ฐฐ์—ด๋กœ ๋ฐ”๋กœ ๋งŒ๋“ค์–ด์„œ ๋ณ€ํ™˜ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.๋†์–ด์˜ ๊ธธ์ด๋ฅผ ํŠน์„ฑ, ๋ฌด๊ฒŒ๋ฅผ Target์œผ๋กœ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.import numpy a..

๐Ÿ“ˆ Data Engineering/๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ [๋ฐ์ดํ„ฐ ๋‹ค๋ฃจ๊ธฐ]

๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ๋ž€?๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ๋Š” ์‰ฝ๊ฒŒ ๋งํ•˜์ž๋ฉด ๋ชจ๋“  ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์— ๋ฐ์ดํ„ฐ๋ฅผ ์ฃผ์ž…ํ•˜๊ธฐ ์ „์—, ๋ฐ์ดํ„ฐ๋ฅผ ๋„ฃ๊ธฐ ์ข‹๊ฒŒ ๊ฐ€๊ณตํ•˜๋Š” ๋‹จ๊ณ„๋ฅผ ๋งํ•ฉ๋‹ˆ๋‹ค.์˜ฌ๋ฐ”๋ฅธ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ ์ „์— ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ๊ฑฐ์นฉ๋‹ˆ๋‹ค.Numpy๋กœ Data ์ค€๋น„ํ•˜๊ธฐํ•œ๋ฒˆ ๋ฐ์ดํ„ฐ๋ฅผ ์ค€๋น„ ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ์ „์— ์‚ฌ์šฉํ–ˆ๋˜ ๋„๋ฏธ, ๋น™์–ด ๋ฐ์ดํ„ฐ๋ฅผ ์ค€๋น„ํ•ด ๋ณด์•˜์Šต๋‹ˆ๋‹ค.# ์ƒ์„ ์˜ ๊ธธ์ดfish_length = [25.4, 26.3, 26.5, 29.0, 29.0, 29.7, 29.7, 30.0, 30.0, 30.7, 31.0, 31.0, 31.5, 32.0, 32.0, 32.0, 33.0, 33.0, 33.5, 33.5, 34.0, 34.0, 34.5, 35.0, 35.0, 35.0..

๐Ÿ“ˆ Data Engineering/๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] ํ›ˆ๋ จ ์„ธํŠธ์™€ ํ…Œ์ŠคํŠธ ์„ธํŠธ [๋ฐ์ดํ„ฐ ๋‹ค๋ฃจ๊ธฐ]

ํ›ˆ๋ จ ์„ธํŠธ์™€ ํ…Œ์ŠคํŠธ ์„ธํŠธ์ง€๋„ ํ•™์Šต๊ณผ ๋น„์ง€๋„ ํ•™์Šต๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํฌ๊ฒŒ ์ง€๋„ ํ•™์Šต(Supervised Learning)๊ณผ ๋น„์ง€๋„ ํ•™์Šต(Unsupervised Learning)์œผ๋กœ ๋‚˜๋ˆŒ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.์ง€๋„ ํ•™์Šต (Supervised Learning)์—์„œ๋Š” ๋ฐ์ดํ„ฐ์™€ ์ •๋‹ต์„ ์ž…๋ ฅ(Input)๊ณผ ํƒ€๊นƒ(Target)์ด๋ผ๊ณ  ํ•˜๊ณ , ์ด ๋‘˜์„ ํ•ฉ์ณ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ(Training Data)๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.K-์ตœ๊ทผ์ ‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ Input data์™€ Target์„ ์‚ฌ์šฉํ–ˆ์œผ๋ฏ€๋กœ ๋‹น์—ฐํžˆ ์ง€๋„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ž…๋‹ˆ๋‹ค.๊ทธ๋ฆฌ๊ณ  Input์œผ๋กœ ์‚ฌ์šฉ๋œ ๊ธธ์ด & ๋ฌด๊ฒŒ๋ฅผ ํŠน์„ฑ(feature)์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.๋น„์ง€๋„ ํ•™์Šต(Unsupervised Learning)์€ Target ์—†์ด Input ๋ฐ์ดํ„ฐ๋งŒ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ •๋‹ต์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ..

๐Ÿ“ˆ Data Engineering/๐Ÿ•น๏ธ ํ˜ผ๊ณต๋จธ์‹ 

[ํ˜ผ๊ณต๋จธ์‹ ] ๋‚˜์˜ ์ฒซ ๋จธ์‹ ๋Ÿฌ๋‹

์ด ๊ธ€์€ ํ•™ํšŒ ์Šคํ„ฐ๋””๋ฅผ ํ•˜๋ฉด์„œ ํ˜ผ์ž ๊ณต๋ถ€ํ•˜๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ + ๋”ฅ๋Ÿฌ๋‹ ์ฑ…์„ ๊ณต๋ถ€ํ•ด์„œ ์ ์€ ๋‚ด์šฉ์ด๋‹ˆ ์ฐธ๊ณ  ๋ฐ”๋ž๋‹ˆ๋‹ค.๊ธฐ๋ณธ์ ์ธ ๊ฐœ๋…๋ณด๋‹ค๋Š” ์‹ค์Šต ๋‚ด์šฉ์— ๊ธฐ๋ฐ˜์„ ๋‘๊ณ  ๊ธ€์„ ์ž‘์„ฑํ•˜์˜€์œผ๋‹ˆ ์ฐธ๊ณ  ๋ฐ”๋ž๋‹ˆ๋‹ค.1- 1.  ์ธ๊ณต์ง€๋Šฅ๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹, ๋”ฅ๋Ÿฌ๋‹์ธ๊ณต์ง€๋Šฅ์ด๋ž€?์ธ๊ณต์ง€๋Šฅ์€ ์‚ฌ๋žŒ์ฒ˜๋Ÿผ ํ•™์Šตํ•˜๊ณ  ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ๋Š” ์ง€๋Šฅ์„ ๊ฐ€์ง„ ์ปดํ“จํ„ฐ ์‹œ์Šคํ…œ์„ ๋งŒ๋“œ๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹์ด๋ž€?๋จธ์‹ ๋Ÿฌ๋‹์ด๋ž€ ๊ทœ์น™์„ ์ผ์ผ์ด ํ”„๋กœ๊ทธ๋ž˜๋ฐ ํ•˜์ง€ ์•Š์•„๋„ ์ž๋™์œผ๋กœ ๋ฐ์ดํ„ฐ์—์„œ ๊ทœ์น™์„ ํ•™์Šตํ•˜์—ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์—ฐ๊ตฌํ•˜๋Š” ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค.๋Œ€ํ‘œ์ ์ธ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋Š” scikit-learn ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋”ฅ๋Ÿฌ๋‹์ด๋ž€?๋งŽ์€ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘์— ์ธ๊ณต์‹ ๊ฒฝ๋ง(Artificial Netural Network)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฐฉ๋ฒ•๋“ค์„ ํ†ต์นญํ•˜์—ฌ ๋”ฅ๋Ÿฌ๋‹์ด๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.๋Œ€ํ‘œ์ ์œผ๋กœ Pytorch, Tensorflow ..

Bigbread1129
'๐Ÿ“ˆ Data Engineering' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (6 Page)