Convolutional Neural Network, CNN은 이미지 인식 & 음식 인식등 다양한 곳에서 사용됩니다.특히 이미지 인식 분야 에서 딥러닝을 활용한 기법은 거이 다 CNN을 기초로 합니다.CNN 전체 구조Convolution Layer(합성곱 계층)과 Pooling Layer(풀링 계층)이 이번에 새로 등장합니다.우리가 본 지금까지의 Neural Network(신경망)은 모든 Neuron과 연결되어 있었습니다.이를 Fully-Connected (FC) - 완전연결 이라고 하며, 완전히 연결된 Layer는 'Affine 계층' 이라는 이름으로 구현했습니다.만약 Affine 계층을 사용하면, Layer가 5개인 Fully-Connected Neural Network(FC 신경망)은 아래의 구림과..
Read more
cnn
[NLP] 합성곱, 순환신경망, Encoder, Decoder에서 수행하는 Self-Attention
📝 NLP (자연어처리)/📕 Natural Language Processing
전에 썼던 내용에 이어서 써보겠습니다. 합성곱 신경망 (CNN Model)과 비교한 Self-Attention CNN은 *Convolution filter(합성곱 필터)라는 특수한 장치를 이용해서 Sequence의 지역적인 특징을 잡아내는 모델입니다. 여기서 Convolution filter(합성곱 필터)는 합성곱 신경망을 구성하는 하나의 요소-필터는 데이터를 전체적으로 훑으면서 인접한 정보를 추출하는 역할을 합니다. 자연어는 기본적으로 Sequence(단어 혹은 형태소의 나열)이고 특정 단어 기준 주변 문맥이 의미 형성에 중요한 역할을 하고 있으므로, CNN이 자연어 처리에 널리 쓰이고 있습니다. 위의 그림은 CNN 문장의 Encoding 방식입니다. Convolution filter(합성곱 필터)가 ..
Read more