Overfitting

📇 Machine Learning

[ML] Supervised Learning (지도학습)

이번에는 Supervised Learning (지도학습)에 데하여 한번 알아보겠습니다. Supervised Learning (지도학습) 이란?지도학습은 Machine Learning(기계학습)의 한 분야로, 입력 데이터와 그에 대응하는 정답(레이블)을 함께 제공받아 학습하는 방법입니다. 이 과정을 통해 알고리즘은 새로운 입력 데이터에 대해 정확한 출력을 예측할 수 있는 모델을 만듭니다. 주요한 특징들에 데하여 더 살펴보면 1. 레이블이 있는 데이터 사용 각 데이터 포인트에는 입력값과 그에 대응하는 정답이 함께 제공됩니다.예를 들어, 이미지 분류 작업에서는 이미지(입력)와 그 이미지가 나타내는 객체의 이름(출력)이 쌍을 이룹니다.사진과 그 사진의 태그(예: "강아지", "고양이")가 쌍으로 주어지면, 모델..

🖥️ Deep Learning

[DL] 올바른 학습을 위해 - Overfitting, Dropout, Hyperparameter

올바른 학습을 위해 Machine Learning에서 Overfitting이 되는 일이 많습니다. Overiftting(오버피팅)은 신경망이 Training data(훈련 데이터)에만 지나치게 적용되어서 그 외의 데이터에는 제대로 대응하지 못하는 상태입니다.Overfitting (오버피팅)오버피팅은 매개변수가 많고 표현력이 높은 모델인 경우, 훈련데이터가 적은 경우에 주로 일어납니다.이 두 요건을 충족하여 Overiftting(오버피팅)을 일으켜 보겠습니다.MNIST Dataset의 훈련데이터중 300개만 사용하고, 7-Layer Network를 사용해서 Network의 복잡성을 높혀보겠습니다.각 Layer의 Neuron은 100개, Activation Function(활성화 함수)는 ReLU 함수를 사..

Bigbread1129
'Overfitting' 태그의 글 목록