분산표현

📝 NLP (자연어처리)/📕 Natural Language Processing

[NLP] Word2Vec, CBOW, Skip-Gram - 개념 & Model

1. What is Word2Vec? Word2Vec은 단어를 벡터로 변환하는데 사용되는 인기있는 알고리즘 입니다. 여기서 단어는 보통 'Token' 토큰 입니다. 이 알고리즘은 단어(Token)들 사이의 의미적 관계를 Vector 공간에 잘 표현할 수 있는 방법을 학습하는 비지도방식(Unsupervised learning)으로 설계한 알고리즘 입니다. 주변 단어들(문맥)을 통해서 각 단어들을 예측하거나, 반대로 각 단어들을 통해 주변의 단어들을 보고 예측하는 방식으로 작동합니다. 비유 하자면 이미지를 학습하듯, 단어를 Vector로 보고 학습합니다. 이렇게 Word2Vec은 단어들 사이의 의미적인 관계를 파악합니다. 그리고, 위의 그림에 있는 문장을 이용해 모델을 학습 시키기 위해서 각 단어(Token..

Bigbread1129
'분산표현' 태그의 글 목록