A A
[Data Analysis] ๊ฐ€์„ค ๊ฒ€์ •๊ณผ A/B Test, ์‹œ๋‚˜๋ฆฌ์˜ค

๊ฐ€์„ค ๊ฒ€์ •์˜ ๊ธฐ์ดˆ

๊ฐ€์„ค ๊ฒ€์ •์€ ํ‘œ๋ณธ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ์ง‘๋‹จ์— ๋Œ€ํ•œ ํ†ต๊ณ„์  ๊ฐ€์„ค์ด ํƒ€๋‹นํ•œ์ง€๋ฅผ ํŒ๋‹จํ•˜๋Š” ๊ณผ์ •์ž…๋‹ˆ๋‹ค.
์ด๋ฅผ ํ†ตํ•ด ์—ฐ๊ตฌ ๊ฐ€์„ค์˜ ์ง€์ง€ ์—ฌ๋ถ€๋ฅผ ๊ฒฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ํ†ต๊ณ„์  ์ฆ๊ฑฐ๋ฅผ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

๊ฐ€์„ค ๊ฒ€์ • ํ”„๋กœ์„ธ์Šค

  1. ๊ท€๋ฌด ๊ฐ€์„ค (Null Hypothesis, H0): ๊ธฐ๋ณธ ๊ฐ€์„ค๋กœ, ๋ณ€ํ™”๊ฐ€ ์—†์Œ์„ ์ฃผ์žฅํ•ฉ๋‹ˆ๋‹ค.
  2. ๋Œ€๋ฆฝ ๊ฐ€์„ค (Alternative Hypothesis, H1): ์—ฐ๊ตฌ ๊ฐ€์„ค๋กœ, ๋ณ€ํ™”๋ฅผ ์ฃผ์žฅํ•ฉ๋‹ˆ๋‹ค.
  3. ๊ฒฐ์ • ๊ทœ์น™: ํ†ต๊ณ„์  ์œ ์˜์„ฑ์„ ํ‰๊ฐ€ํ•˜์—ฌ ๊ฐ€์„ค์„ ๊ธฐ๊ฐํ•˜๊ฑฐ๋‚˜ ์ฑ„ํƒํ•ฉ๋‹ˆ๋‹ค. ์ฃผ๋กœ p-value๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ท€๋ฌด ๊ฐ€์„ค์˜ ๊ธฐ๊ฐ ์—ฌ๋ถ€๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค.

T๊ฒ€์ • (T-test)

T๊ฒ€์ •์€ ๋‘ ๊ทธ๋ฃน ๊ฐ„์˜ ํ‰๊ท  ์ฐจ์ด๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•œ์ง€ ๊ฒ€์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
๋ฐ์ดํ„ฐ๊ฐ€ ์ •๊ทœ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๊ณ  ๋‘ ์ง‘๋‹จ์˜ ์ƒ˜ํ”Œ ํฌ๊ธฐ๊ฐ€ ๋น„๊ต์  ์ž‘์„ ๋•Œ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.

์œ ํ˜•

๋…๋ฆฝ ํ‘œ๋ณธ T๊ฒ€์ • (Independent Sample T-test): ๋‘ ๋…๋ฆฝ๋œ ๊ทธ๋ฃน ๊ฐ„์˜ ํ‰๊ท  ์ฐจ์ด๋ฅผ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค.

from scipy.stats import ttest_ind

group1 = [1, 2, 3, 4, 5]
group2 = [2, 3, 4, 5, 6]
t_stat, p_value = ttest_ind(group1, group2)
print(f'T-statistic: {t_stat}, P-value: {p_value}')

 

๋Œ€์‘ ํ‘œ๋ณธ T๊ฒ€์ • (Paired Sample T-test): ๋™์ผํ•œ ๊ทธ๋ฃน์˜ ์‚ฌ์ „-์‚ฌํ›„ ํ‰๊ท  ์ฐจ์ด๋ฅผ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค.

from scipy.stats import ttest_rel

before = [1, 2, 3, 4, 5]
after = [2, 3, 4, 5, 6]
t_stat, p_value = ttest_rel(before, after)
print(f'T-statistic: {t_stat}, P-value: {p_value}')

 

๋‹จ์ผ ํ‘œ๋ณธ T๊ฒ€์ • (One Sample T-test): ํ‘œ๋ณธ ํ‰๊ท ์ด ํŠน์ • ๊ฐ’๊ณผ ๋‹ค๋ฅธ์ง€ ๊ฒ€์ •ํ•ฉ๋‹ˆ๋‹ค.

from scipy.stats import ttest_1samp

sample = [1, 2, 3, 4, 5]
t_stat, p_value = ttest_1samp(sample, 3)
print(f'T-statistic: {t_stat}, P-value: {p_value}')

ANOVA (Analysis of Variance, ๋ถ„์‚ฐ ๋ถ„์„)

ANOVA๋Š” ์„ธ ๊ฐœ ์ด์ƒ์˜ ๊ทธ๋ฃน ๊ฐ„ ํ‰๊ท ์˜ ์ฐจ์ด๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•œ์ง€ ๊ฒ€์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
์—ฌ๋Ÿฌ ์ง‘๋‹จ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋น„๊ตํ•  ๋•Œ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
  • ์˜ˆ๋ฅผ ๋“ค์–ด, ๋‹ค์–‘ํ•œ ๋งˆ์ผ€ํŒ… ์ „๋žต์˜ ํšจ๊ณผ๋ฅผ ๋น„๊ตํ•  ๋•Œ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
from scipy.stats import f_oneway

group1 = [1, 2, 3, 4, 5]
group2 = [2, 3, 4, 5, 6]
group3 = [3, 4, 5, 6, 7]
f_stat, p_value = f_oneway(group1, group2, group3)
print(f'F-statistic: {f_stat}, P-value: {p_value}')

๋น„๋ชจ์ˆ˜์  ๋ฐฉ๋ฒ•

๋น„๋ชจ์ˆ˜์  ๋ฐฉ๋ฒ•์€ ๋ฐ์ดํ„ฐ๊ฐ€ ์ •๊ทœ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด์ง€ ์•Š์„ ๋•Œ ์‚ฌ์šฉํ•˜๋Š” ํ†ต๊ณ„์  ๊ฒ€์ • ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.

์ฃผ์š” ๋น„๋ชจ์ˆ˜์  ๊ฒ€์ •

1. ํฌ๋ฃจ์Šค์นผ-์™ˆ๋ฆฌ์Šค ๊ฒ€์ • (Kruskal-Wallis Test): ์—ฌ๋Ÿฌ ๋…๋ฆฝ๋œ ํ‘œ๋ณธ ๊ทธ๋ฃน์„ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค. ANOVA์˜ ๋น„๋ชจ์ˆ˜์  ๋Œ€์•ˆ์ž…๋‹ˆ๋‹ค.

from scipy.stats import kruskal

group1 = [1, 2, 3, 4, 5]
group2 = [2, 3, 4, 5, 6]
group3 = [3, 4, 5, 6, 7]
stat, p_value = kruskal(group1, group2, group3)
print(f'Statistic: {stat}, P-value: {p_value}')

 

2. ๋งจ-ํœ˜ํŠธ๋‹ˆ U ๊ฒ€์ • (Mann-Whitney U Test): ๋‘ ๋…๋ฆฝ ํ‘œ๋ณธ ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ๊ฒ€์ •ํ•ฉ๋‹ˆ๋‹ค.

from scipy.stats import mannwhitneyu

group1 = [1, 2, 3, 4, 5]
group2 = [2, 3, 4, 5, 6]
stat, p_value = mannwhitneyu(group1, group2)
print(f'Statistic: {stat}, P-value: {p_value}')

 

3. ์œŒ์ฝ•์Šจ ๋ถ€ํ˜ธ ์ˆœ์œ„ ๊ฒ€์ • (Wilcoxon Signed-Rank Test): ๋‘ ๊ด€๋ จ ํ‘œ๋ณธ ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ๊ฒ€์ •ํ•ฉ๋‹ˆ๋‹ค.

from scipy.stats import mannwhitneyu

group1 = [1, 2, 3, 4, 5]
group2 = [2, 3, 4, 5, 6]
stat, p_value = mannwhitneyu(group1, group2)
print(f'Statistic: {stat}, P-value: {p_value}')

A/B ํ…Œ์ŠคํŠธ

A/B ํ…Œ์ŠคํŠธ๋Š” ๋‘ ๊ฐ€์ง€ ์ด์ƒ์˜ ๋ฒ„์ „(์˜ˆ: ์›น ํŽ˜์ด์ง€, ์ œํ’ˆ, ์„œ๋น„์Šค)์„ ๋™์‹œ์— ์‹คํ–‰ํ•˜์—ฌ ์–ด๋Š ๊ฒƒ์ด ๋” ํšจ๊ณผ์ ์ธ์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์‹คํ—˜์  ์ ‘๊ทผ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.
  • ์ด๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž ๊ฒฝํ—˜, ์ œํ’ˆ ์„ฑ๋Šฅ, ๋งˆ์ผ€ํŒ… ์ „๋žต ๋“ฑ์„ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

A/B ํ…Œ์ŠคํŠธ์˜ ์ค‘์š”์„ฑ

 

  • ๋น„์ฆˆ๋‹ˆ์Šค ์˜์‚ฌ๊ฒฐ์ • ๊ฐœ์„ : ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•ด์„œ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋ฏ€๋กœ, ๊ฐ€์ •์ด๋‚˜ ์ถ”์ธก๋ณด๋‹ค ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ํ˜์‹ ์ ์ธ ์•„์ด๋””์–ด ๊ฒ€์ฆ: ์ƒˆ๋กœ์šด ์•„์ด๋””์–ด๋‚˜ ๊ธฐ๋Šฅ์„ ์•ˆ์ „ํ•˜๊ฒŒ ํ…Œ์ŠคํŠธํ•˜๊ณ , ์‹ค์ œ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์‚ฌ์šฉ์ž ๋งŒ์กฑ๋„ ํ–ฅ์ƒ: ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์„ ๊ฐœ์„ ํ•˜๊ณ , ์‚ฌ์šฉ์ž์˜ ์š”๊ตฌ์— ๋” ์ž˜ ๋งž๋Š” ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Example.

1. ์›น์‚ฌ์ดํŠธ ๋””์ž์ธ ํ…Œ์ŠคํŠธ: A/B ํ…Œ์ŠคํŠธ๋ฅผ ํ†ตํ•ด ๋‘ ๊ฐ€์ง€ ์›น์‚ฌ์ดํŠธ ๋””์ž์ธ ์ค‘ ์–ด๋Š ๊ฒƒ์ด ๋” ๋†’์€ ์ „ํ™˜์œจ์„ ๋ณด์ด๋Š”์ง€ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

import numpy as np
from scipy.stats import ttest_ind

# ์˜ˆ์‹œ ๋ฐ์ดํ„ฐ
conversion_a = np.random.binomial(1, 0.2, 1000)  # A ๋ฒ„์ „์˜ ์ „ํ™˜์œจ
conversion_b = np.random.binomial(1, 0.25, 1000)  # B ๋ฒ„์ „์˜ ์ „ํ™˜์œจ

t_stat, p_value = ttest_ind(conversion_a, conversion_b)
print(f'T-statistic: {t_stat}, P-value: {p_value}')

 

2. ๋งˆ์ผ€ํŒ… ์ „๋žต ํ…Œ์ŠคํŠธ: ๋‘ ๊ฐ€์ง€ ๋งˆ์ผ€ํŒ… ์บ ํŽ˜์ธ ์ค‘ ์–ด๋Š ๊ฒƒ์ด ๋” ๋†’์€ ๋งค์ถœ์„ ์˜ฌ๋ฆฌ๋Š”์ง€ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

# ์˜ˆ์‹œ ๋ฐ์ดํ„ฐ
sales_a = [200, 220, 250, 230, 210]
sales_b = [240, 260, 270, 250, 230]

t_stat, p_value = ttest_ind(sales_a, sales_b)
print(f'T-statistic: {t_stat}, P-value: {p_value}')

 


์‹œ๋‚˜๋ฆฌ์˜ค

๋ฐ์ดํ„ฐ ๋ถ„์„์—์„œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ž€ ํŠน์ • ์กฐ๊ฑด์ด๋‚˜ ์ƒํ™ฉ์„ ๊ฐ€์ •ํ•˜์—ฌ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
  • ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๊ฐ€์ •์ด๋‚˜ ๋ณ€์ˆ˜ ์กฐํ•ฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์–‘ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์ตœ์ ์˜ ์˜์‚ฌ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๋ฐ ๋„์›€์„ ์ค๋‹ˆ๋‹ค.
  • ์‹œ๋‚˜๋ฆฌ์˜ค ๋ถ„์„์€ ํŠนํžˆ ๋ถˆํ™•์‹ค์„ฑ์ด ๋†’์€ ์ƒํ™ฉ์—์„œ ๋‹ค์–‘ํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ๊ตฌํ•˜๊ณ  ๋Œ€๋น„์ฑ…์„ ๋งˆ๋ จํ•˜๋Š” ๋ฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.

์‹œ๋‚˜๋ฆฌ์˜ค ๋ถ„์„์˜ ๋ชฉ์ 

์‹œ๋‚˜๋ฆฌ์˜ค ๋ถ„์„์˜ ๋ชฉ์ ์€ ํฌ๊ฒŒ 4๊ฐ€์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

 

  • ๋ฏธ๋ž˜ ์˜ˆ์ธก: ๋‹ค์–‘ํ•œ ์กฐ๊ฑดํ•˜์—์„œ์˜ ๊ฐ€๋Šฅํ•œ ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜์—ฌ ๋ถˆํ™•์‹คํ•œ ๋ฏธ๋ž˜๋ฅผ ๋Œ€๋น„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์˜์‚ฌ๊ฒฐ์ • ์ง€์›: ๊ฐ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ฅธ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์ตœ์ ์˜ ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ค๋‹ˆ๋‹ค.
  • ์œ„ํ—˜ ๊ด€๋ฆฌ: ์—ฌ๋Ÿฌ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ณ ๋ คํ•จ์œผ๋กœ์จ ์ž ์žฌ์ ์ธ ์œ„ํ—˜์„ ์‹๋ณ„ํ•˜๊ณ , ์ด๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ „๋žต์„ ์ˆ˜๋ฆฝํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ „๋žต ๊ฐœ๋ฐœ: ์‹œ๋‚˜๋ฆฌ์˜ค ๋ถ„์„์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ „๋žต์„ ํ…Œ์ŠคํŠธํ•˜๊ณ , ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ์ „๋žต์„ ์„ ํƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์‹œ๋‚˜๋ฆฌ์˜ค ์˜ˆ์‹œ (Example)

์—ฌ๋Ÿฌ๋ถ„์€ ์˜จ๋ผ์ธ ์‡ผํ•‘๋ชฐ์„ ์šด์˜ํ•˜๋Š” ‘A’์˜ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ฐ€ ์ž…๋‹ˆ๋‹ค.
A ๋Š” ์ตœ๊ทผ ์›น์‚ฌ์ดํŠธ์˜ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค(UI)๋ฅผ ์ƒˆ๋กญ๊ฒŒ ๋ณ€๊ฒฝํ–ˆ์Šต๋‹ˆ๋‹ค.
์ด ๋ณ€๊ฒฝ์ด ์‹ค์ œ๋กœ ์‚ฌ์šฉ์ž๋“ค์˜ ๊ตฌ๋งค ์ „ํ™˜์œจ์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์ณค๋Š”์ง€ ๋ถ„์„ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ: UI ๋ณ€๊ฒฝ ์ „๊ณผ ๋ณ€๊ฒฝ ํ›„์˜ ์‚ฌ์šฉ์ž ์ƒํ˜ธ์ž‘์šฉ ๋กœ๊ทธ, ๊ตฌ๋งค ์ด๋ ฅ, ๊ทธ๋ฆฌ๊ณ  ์‚ฌ์šฉ์ž ํ”ผ๋“œ๋ฐฑ ๋ฐ์ดํ„ฐ

 

  • ๊ฐ€์ƒ์˜ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import pearsonr, ttest_ind
import statsmodels.api as sm

# ๊ฐ€์ƒ์˜ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ
np.random.seed(42)
data = pd.DataFrame({
    'user_id': range(1, 201),
    'ui_type': ['A']*100 + ['B']*100,
    'session_duration': np.random.normal(5, 1.5, 200).tolist(),
    'page_views': np.random.randint(1, 10, 200),
    'conversion': np.random.binomial(1, 0.1, 100).tolist() + np.random.binomial(1, 0.15, 100).tolist(),
    'feedback': ['Good', 'Bad', 'Neutral', 'Excellent', 'Poor']*40
})

๋ฐ์ดํ„ฐ ์ข…๋ฅ˜์™€ ์†์„ฑ ํƒ์ƒ‰

์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ์˜ ์ข…๋ฅ˜์™€ ์†์„ฑ์„ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์€ ๋ฐ์ดํ„ฐ ๋ถ„์„์˜ ์ฒซ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค.
์ด๋Š” ๋ฐ์ดํ„ฐ์˜ ์ •์„ฑ์ , ์ •๋Ÿ‰์  ํŠน์„ฑ์„ ์ดํ•ดํ•˜๊ณ , ๋ถ„์„์˜ ๋ฐฉํ–ฅ์„ ์„ค์ •ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ์˜ ํƒ€์ž…์€ 4๊ฐ€์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

 

  • ์ •์„ฑ์  ๋ฐ์ดํ„ฐ (Qualitative Data)
    • ์„ค๋ช…: ํ…์ŠคํŠธ, ์ด๋ฏธ์ง€, ๋น„๋””์˜ค ๋“ฑ ์ˆ˜์น˜ํ™”ํ•  ์ˆ˜ ์—†๋Š” ๋ฐ์ดํ„ฐ. ์˜ˆ: ์‚ฌ์šฉ์ž ํ”ผ๋“œ๋ฐฑ.
    • ๋ถ„์„ ๋ฐฉ๋ฒ•: ํ…์ŠคํŠธ ๋งˆ์ด๋‹, ๊ฐ์ • ๋ถ„์„, ์ฃผ์ œ ๋ชจ๋ธ๋ง.
    • ์˜ˆ์‹œ: ์‚ฌ์šฉ์ž ํ”ผ๋“œ๋ฐฑ์„ ํ…์ŠคํŠธ๋กœ ๋ถ„์„ํ•˜์—ฌ ๊ธ์ •์ , ๋ถ€์ •์ , ์ค‘๋ฆฝ์  ํ”ผ๋“œ๋ฐฑ์œผ๋กœ ๋ถ„๋ฅ˜.
  • ์ •๋Ÿ‰์  ๋ฐ์ดํ„ฐ (Quantitative Data)
    • ์„ค๋ช…: ์ˆ˜์น˜๋กœ ํ‘œํ˜„๋˜๋Š” ๋ฐ์ดํ„ฐ. ์˜ˆ: ์ฒด๋ฅ˜ ์‹œ๊ฐ„, ๊ตฌ๋งค ๊ธˆ์•ก.
    • ๋ถ„์„ ๋ฐฉ๋ฒ•: ํ†ต๊ณ„ ๋ถ„์„, ์‹œ๊ฐํ™”, ํšŒ๊ท€ ๋ถ„์„.
    • ์˜ˆ์‹œ: ์ฒด๋ฅ˜ ์‹œ๊ฐ„๊ณผ ๊ตฌ๋งค ๊ธˆ์•ก์„ ๋ถ„์„ํ•˜์—ฌ ํ‰๊ท , ์ค‘์•™๊ฐ’, ํ‘œ์ค€ํŽธ์ฐจ ๋“ฑ์„ ๊ณ„์‚ฐ.
  • ์—ฐ์†ํ˜• ๋ฐ์ดํ„ฐ (Continuous Data)
    • ์„ค๋ช…: ์—ฐ์†์ ์ธ ๊ฐ’์„ ๊ฐ€์ง€๋Š” ๋ฐ์ดํ„ฐ. ์˜ˆ: ์ฒด๋ฅ˜ ์‹œ๊ฐ„, ๊ตฌ๋งค ๊ธˆ์•ก.
    • ๋ถ„์„ ๋ฐฉ๋ฒ•: ํžˆ์Šคํ† ๊ทธ๋žจ, ๋ฐ•์Šค ํ”Œ๋กฏ, ์‚ฐ์ ๋„.
    • ์˜ˆ์‹œ: ์ฒด๋ฅ˜ ์‹œ๊ฐ„์˜ ํžˆ์Šคํ† ๊ทธ๋žจ์„ ๊ทธ๋ ค ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋ฅผ ํŒŒ์•….
  • ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ (Categorical Data)
    • ์„ค๋ช…: ํŠน์ • ๋ฒ”์ฃผ๋กœ ๊ตฌ๋ถ„๋˜๋Š” ๋ฐ์ดํ„ฐ. ์˜ˆ: ์‚ฌ์šฉ์ž ์„ฑ๋ณ„, ์‚ฌ์šฉ UI ํƒ€์ž….
    • ๋ถ„์„ ๋ฐฉ๋ฒ•: ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„, ํ”ผ๋ฒ— ํ…Œ์ด๋ธ”.
    • ์˜ˆ์‹œ: ์‚ฌ์šฉ์ž ์„ฑ๋ณ„์— ๋”ฐ๋ฅธ ๊ตฌ๋งค ์ „ํ™˜์œจ ๋น„๊ต.

๋ฐ์ดํ„ฐ ๋ถ€๋ถ„ ์˜ˆ์ œ ์ฝ”๋“œ

# ์‚ฌ์šฉ์ž ํ”ผ๋“œ๋ฐฑ ๋ฐ์ดํ„ฐ ์ •์„ฑ์ , ์ •๋Ÿ‰์  ๋ฐ์ดํ„ฐ๋กœ ๊ตฌ๋ถ„
feedback_counts = data['feedback'].value_counts()

# ์—ฐ์†ํ˜• ๋ฐ์ดํ„ฐ์™€ ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ ์‹๋ณ„
continuous_data = data[['session_duration', 'page_views']]
categorical_data = data[['user_id', 'ui_type', 'conversion', 'feedback']]

๊ธฐ์ดˆ ํ†ต๊ณ„ ๋ฐ EDA (Exploratory Data Analysis)

๊ธฐ์ดˆ ํ†ต๊ณ„ ๋ฐ ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA)์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ์˜ ์ „๋ฐ˜์ ์ธ ํŠน์„ฑ๊ณผ ํŒจํ„ด์„ ํŒŒ์•…ํ•˜๊ณ , ์ดˆ๊ธฐ ์ธ์‚ฌ์ดํŠธ๋ฅผ ๋„์ถœํ•ฉ๋‹ˆ๋‹ค.
ํ•œ๋ฒˆ 4๊ฐ€์ง€์˜ ์˜ˆ์ œ๋ฅผ ํ•œ๋ฒˆ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

 

๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ ํŒŒ์•…

  • ํžˆ์Šคํ† ๊ทธ๋žจ: ์ฒด๋ฅ˜ ์‹œ๊ฐ„๊ณผ ํŽ˜์ด์ง€ ๋ทฐ์˜ ํžˆ์Šคํ† ๊ทธ๋žจ์„ ๊ทธ๋ ค ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๋ฅผ ํŒŒ์•…ํ•ฉ๋‹ˆ๋‹ค.
# ๊ธฐ์ดˆ ํ†ต๊ณ„ ๋ฐ EDA
# ํžˆ์Šคํ† ๊ทธ๋žจ: ์ฒด๋ฅ˜ ์‹œ๊ฐ„๊ณผ ํŽ˜์ด์ง€ ๋ทฐ
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
sns.histplot(data['session_duration'], bins=30, kde=True)
plt.title('Session Duration Distribution')

plt.subplot(1, 2, 2)
sns.histplot(data['page_views'], bins=30, kde=True)
plt.title('Page Views Distribution')
plt.show()

 

์ค‘์‹ฌ ๊ฒฝํ–ฅ๊ณผ ๋ถ„์‚ฐ ํŒŒ์•…

  • ๊ธฐ์ดˆ ํ†ต๊ณ„: ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ, ์ค‘์‹ฌ ๊ฒฝํ–ฅ, ๋ถ„์‚ฐ ๋“ฑ์„ ํŒŒ์•…ํ•˜๊ณ , ์ดˆ๊ธฐ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค.
mean_duration = data['session_duration'].mean()
median_duration = data['session_duration'].median()
std_duration = data['session_duration'].std()

print(f'Mean: {mean_duration}, Median: {median_duration}, Std Dev: {std_duration}')

 

์ƒ๊ด€๊ด€๊ณ„ ํƒ์ƒ‰

  • ์‚ฐ์ ๋„: ๊ตฌ๋งค ์ „ํ™˜์œจ๊ณผ ์ฒด๋ฅ˜ ์‹œ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์‚ฐ์ ๋„๋กœ ๋‚˜ํƒ€๋‚ด ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ํƒ์ƒ‰ํ•ฉ๋‹ˆ๋‹ค.
# ์‚ฐ์ ๋„: ๊ตฌ๋งค ์ „ํ™˜์œจ๊ณผ ์ฒด๋ฅ˜ ์‹œ๊ฐ„
plt.figure(figsize=(8, 6))
sns.scatterplot(x='session_duration', y='conversion', data=data)
plt.title('Session Duration vs Conversion Rate')
plt.xlabel('Session Duration')
plt.ylabel('Conversion Rate')
plt.show()

์ด์ƒ์น˜ ์‹๋ณ„

  • ๋ฐ•์Šค ํ”Œ๋กฏ: ๋ฐ•์Šค ํ”Œ๋กฏ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฒด๋ฅ˜ ์‹œ๊ฐ„์˜ ์ด์ƒ์น˜๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ์ฒ˜๋ฆฌ ๋ฐฉ์•ˆ์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค.
data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]
plt.boxplot(data)
plt.title('Box Plot')
plt.ylabel('Value')
plt.show()


์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„

๊ฐ ๋ณ€์ˆ˜๋“ค์ด ๊ตฌ๋งค ์ „ํ™˜์œจ๊ณผ ๊ฐ–๋Š” ์ƒ๊ด€๊ด€๊ณ„์™€ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค.
  • ํ”ผ์–ด์Šจ ์ƒ๊ด€ ๊ณ„์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์ฒด๋ฅ˜ ์‹œ๊ฐ„๊ณผ ๊ตฌ๋งค ์ „ํ™˜์œจ ๊ฐ„์˜ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•ฉ๋‹ˆ๋‹ค.
# ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„
# ํ”ผ์–ด์Šจ ์ƒ๊ด€ ๊ณ„์ˆ˜ ๊ณ„์‚ฐ
corr, _ = pearsonr(data['session_duration'], data['conversion'])
print(f'Pearson correlation between session duration and conversion: {corr}')

# Pearson correlation between session duration and conversion: -0.05994324020560468
  • ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ์œ ์ถ”ํ•˜๊ธฐ ์œ„ํ•ด ์ถ”๊ฐ€์ ์ธ ๋ณ€์ˆ˜๋“ค(์˜ˆ: ํŽ˜์ด์ง€ ๋ทฐ, ์„ธ์…˜ ์ค‘ ๋ฐœ์ƒํ•œ ์ด๋ฒคํŠธ ์ˆ˜)์„ ๊ณ ๋ คํ•˜์—ฌ ๋‹ค์ค‘ ํšŒ๊ท€๋ถ„์„์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
 # ๋‹ค์ค‘ ํšŒ๊ท€๋ถ„์„ ์ˆ˜ํ–‰
X = data[['session_duration', 'page_views']]
X = sm.add_constant(X)  # ์ƒ์ˆ˜ ํ•ญ ์ถ”๊ฐ€
y = data['conversion']
model = sm.OLS(y, X).fit()
print(model.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:             conversion   R-squared:                       0.004
Model:                            OLS   Adj. R-squared:                 -0.007
Method:                 Least Squares   F-statistic:                    0.3555
Date:                Sat, 20 Jul 2024   Prob (F-statistic):              0.701
Time:                        14:13:00   Log-Likelihood:                -80.153
No. Observations:                 200   AIC:                             166.3
Df Residuals:                     197   BIC:                             176.2
Df Model:                           2                                         
Covariance Type:            nonrobust                                         
====================================================================================
                       coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------------
const                0.2309      0.103      2.246      0.026       0.028       0.434
session_duration    -0.0156      0.019     -0.841      0.401      -0.052       0.021
page_views           0.0002      0.010      0.024      0.981      -0.020       0.020
==============================================================================
Omnibus:                       72.128   Durbin-Watson:                   2.055
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              141.950
Skew:                           1.897   Prob(JB):                     1.50e-31
Kurtosis:                       4.625   Cond. No.                         29.6
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

๊ฐ€์„ค ๊ฒ€์ • ๋ฐ A/B ํ…Œ์ŠคํŠธ

  • ๋ณ€๊ฒฝ๋œ UI๊ฐ€ ๊ตฌ๋งค ์ „ํ™˜์œจ์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋Š”์ง€๋ฅผ ํ†ต๊ณ„์ ์œผ๋กœ ๊ฒ€์ฆํ•ฉ๋‹ˆ๋‹ค.
  • ์‚ฌ์šฉ์ž๋ฅผ ๋‘ ๊ทธ๋ฃน(๊ธฐ์กด UI์™€ ์ƒˆ UI ์‚ฌ์šฉ์ž)์œผ๋กœ ๋‚˜๋ˆ„๊ณ , ์ด๋“ค ๊ฐ„์˜ ๊ตฌ๋งค ์ „ํ™˜์œจ์„ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค.
  • ์‚ฌ์šฉ์ž๋ฅผ ๋ฌด์ž‘์œ„๋กœ ๋‘ ๊ทธ๋ฃน(A: ๊ธฐ์กด UI, B: ์ƒˆ UI)์œผ๋กœ ํ• ๋‹นํ•ฉ๋‹ˆ๋‹ค.
# ๊ฐ€์„ค ๊ฒ€์ • ๋ฐ A/B ํ…Œ์ŠคํŠธ
# A/B ํ…Œ์ŠคํŠธ๋ฅผ ์œ„ํ•œ ๋…๋ฆฝ ํ‘œ๋ณธ T๊ฒ€์ • ์ˆ˜ํ–‰
group_A = data[data['ui_type'] == 'A']['conversion']
group_B = data[data['ui_type'] == 'B']['conversion']

t_stat, p_value = ttest_ind(group_A, group_B)
print(f'T-statistic: {t_stat}, P-value: {p_value}')

# T-statistic: 1.3672469278991675, P-value: 0.1730980605898706
  • ๊ฐ ๊ทธ๋ฃน์˜ ๊ตฌ๋งค ์ „ํ™˜์œจ์„ ๊ณ„์‚ฐํ•˜๊ณ , ๋‘ ๊ทธ๋ฃน ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋…๋ฆฝ ํ‘œ๋ณธ T๊ฒ€์ •์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
  • p-๊ฐ’๊ณผ ์œ ์˜ ์ˆ˜์ค€(0.05)์„ ๋น„๊ตํ•˜์—ฌ ๊ท€๋ฌด ๊ฐ€์„ค(๋‘ UI ๊ฐ„์— ์ฐจ์ด๊ฐ€ ์—†๋‹ค)์˜ ๊ธฐ๊ฐ ์—ฌ๋ถ€๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
# ์œ ์˜ ์ˆ˜์ค€ 0.05์—์„œ ๊ท€๋ฌด ๊ฐ€์„ค ๊ธฐ๊ฐ ์—ฌ๋ถ€ ๊ฒฐ์ •
alpha = 0.05
if p_value < alpha:
    print("๊ท€๋ฌด ๊ฐ€์„ค ๊ธฐ๊ฐ: ๋‘ UI ๊ฐ„์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์žˆ์Œ")
else:
    print("๊ท€๋ฌด ๊ฐ€์„ค ์ฑ„ํƒ: ๋‘ UI ๊ฐ„์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์—†์Œ")
    
# ๊ท€๋ฌด ๊ฐ€์„ค ์ฑ„ํƒ: ๋‘ UI ๊ฐ„์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์—†์Œ
  • ํ†ต๊ณ„์  ๊ฒ€์ •์„ ํ†ตํ•ด ์–ป์€ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ UI ๋ณ€๊ฒฝ์˜ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
# ํ†ต๊ณ„์  ๊ฒ€์ •์„ ํ†ตํ•ด ์–ป์€ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ UI ๋ณ€๊ฒฝ์˜ ํšจ๊ณผ ํ‰๊ฐ€
if p_value < alpha:
    print("์ƒˆ๋กœ์šด UI๊ฐ€ ๊ตฌ๋งค ์ „ํ™˜์œจ์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์ณค์Šต๋‹ˆ๋‹ค.")
else:
    print("์ƒˆ๋กœ์šด UI๊ฐ€ ๊ตฌ๋งค ์ „ํ™˜์œจ์— ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.")
    
# ์ƒˆ๋กœ์šด UI๊ฐ€ ๊ตฌ๋งค ์ „ํ™˜์œจ์— ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.

Conclusion (๊ฒฐ๋ก )

 

  • ํ”ผ์–ด์Šจ ์ƒ๊ด€ ๊ณ„์ˆ˜: ์ฒด๋ฅ˜ ์‹œ๊ฐ„๊ณผ ๊ตฌ๋งค ์ „ํ™˜์œจ ๊ฐ„์˜ ์„ ํ˜• ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ˆ˜์น˜์ ์œผ๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ฐ’์ด 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๊ฐ•ํ•œ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ, -1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๊ฐ•ํ•œ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. 0์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๊ฑฐ์˜ ์—†์Œ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
  • ๋‹ค์ค‘ ํšŒ๊ท€๋ถ„์„: ์ฒด๋ฅ˜ ์‹œ๊ฐ„, ํŽ˜์ด์ง€ ๋ทฐ ๋“ฑ ์—ฌ๋Ÿฌ ๋ณ€์ˆ˜๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๊ตฌ๋งค ์ „ํ™˜์œจ์— ๋Œ€ํ•œ ์˜ํ–ฅ์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํšŒ๊ท€ ๋ชจ๋ธ์˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๊ฐ ๋ณ€์ˆ˜์˜ ๊ธฐ์—ฌ๋„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
Pearson correlation between session duration and conversion: -0.05994324020560468
- ํŽ˜์ด์ง€์—์„œ์˜ ์ฒด๋ฅ˜์‹œ๊ฐ„๊ณผ ๊ตฌ๋งค ์ „ํ™˜์œจ์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋Š” 0์— ๊ฑฐ์ด ๊ฐ€๊นŒ์›€์œผ๋กœ ๊ฑฐ์ด ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์—†์Œ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.

 

  • T๊ฒ€์ • ๊ฒฐ๊ณผ: ๋‘ UI ๊ทธ๋ฃน ๊ฐ„์˜ ๊ตฌ๋งค ์ „ํ™˜์œจ ์ฐจ์ด๋ฅผ ํ‰๊ฐ€ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. T๊ฒ€์ •์˜ t-ํ†ต๊ณ„๋Ÿ‰๊ณผ p-๊ฐ’์„ ํ†ตํ•ด ๋‘ ๊ทธ๋ฃน ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•œ์ง€ ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๊ท€๋ฌด ๊ฐ€์„ค์˜ ๊ธฐ๊ฐ ์—ฌ๋ถ€: p-๊ฐ’์ด ์œ ์˜ ์ˆ˜์ค€(alpha)๋ณด๋‹ค ์ž‘์œผ๋ฉด ๊ท€๋ฌด ๊ฐ€์„ค์„ ๊ธฐ๊ฐํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋‘ UI ๊ฐ„์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์žˆ์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ p-๊ฐ’์ด ์œ ์˜ ์ˆ˜์ค€๋ณด๋‹ค ํฌ๋ฉด ๊ท€๋ฌด ๊ฐ€์„ค์„ ์ฑ„ํƒํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋‘ UI ๊ฐ„์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์—†์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
P-value์˜ ํ•ด์„- 
P-value: 0.1730980605898706
์œ ์˜ ์ˆ˜์ค€ (alpha): 0.05
P-value๊ฐ€ 0.05๋ณด๋‹ค ํฌ๋ฏ€๋กœ, ๊ท€๋ฌด ๊ฐ€์„ค์„ ๊ธฐ๊ฐํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.

 

 

P-value๊ฐ€ ์œ ์˜ ์ˆ˜์ค€ 0.05๋ณด๋‹ค ํฌ๋ฏ€๋กœ, ๋‘ UI ๊ฐ„์˜ ๊ตฌ๋งค ์ „ํ™˜์œจ์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์—†๋‹ค๊ณ  ๊ฒฐ๋ก ์ง€์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ฆ‰, ๋ฐ์ดํ„ฐ ๋ถ„์„ ๊ฒฐ๊ณผ ์ƒˆ๋กœ์šด UI๊ฐ€ ๊ธฐ์กด UI์— ๋น„ํ•ด ๊ตฌ๋งค ์ „ํ™˜์œจ์— ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.

๊ฒฐ๋ก ์€ ๊ท€๋ฌด ๊ฐ€์„ค ์ฑ„ํƒ์ด ๋˜์—ˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.